JZOJ1286.【USACO题库】3.2.5 Magic Squares魔板

本文介绍了一款名为魔板的游戏,该游戏基于二维魔方概念,并提供了三种基本操作。文章详细阐述了如何通过广度优先搜索(BFS)算法解决魔板游戏问题,实现从初始状态到目标状态的最少步骤转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4
8 7 6 5

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一行插入最左边;

“C”:魔板中央作顺时针旋转。

下面是对基本状态进行操作的示范:

A:

8 7 6 5
1 2 3 4
B:

4 1 2 3
5 8 7 6
C:

1 7 2 4
8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到特殊状态的转换,输出基本操作序列。

PROGRAM NAME: msquare

INPUT FORMAT

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间),表示目标状态。

SAMPLE INPUT (file msquare.in)

2 6 8 4 5 7 3 1

Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

OUTPUT FORMAT

SAMPLE OUTPUT (file msquare.out)

7 BCABCCB

输入

输出

样例输入

样例输出

数据范围限制

思路:
一眼即知:纯BFS,8的8次方根本不怂
细节很多,这点要注意,调试了我一个晚上
正解:BFS+模拟

代码:

type
        arr=array[1..8] of longint;
const
        jia:array['A'..'C',1..8] of longint=
        ((8,7,6,5,4,3,2,1),
        (4,1,2,3,6,7,8,5),
        (1,7,2,4,5,3,6,8));
var
        bz:array[1..8,1..8,1..8,1..8,1..8,1..8,1..8,1..8] of boolean;
        n,i,head,tail:longint;
        team:array[0..1000000]of
        record
                state:arr;
                st:ansistring;
                tot:longint;
        end;
        a,t:arr;
        k:char;
function judge(t:arr):boolean;
begin
        for i:=1 to 8 do
        if a[i]<>t[i] then exit(false);
        exit(true);
end;
procedure change;
begin
        if not bz[t[1],t[2],t[3],t[4],t[5],t[6],t[7],t[8]] then
        bz[t[1],t[2],t[3],t[4],t[5],t[6],t[7],t[8]]:=true
                else dec(tail);
end;
begin
        for i:=1 to 8 do read(a[i]);
        with team[1] do
        begin
                tot:=0;
                st:='';
                for i:=1 to 8 do
                        state[i]:=i;
                if judge(state) then
                begin
                        writeln(0);
                        halt; 
                end;
        end;
        head:=0;
        tail:=1;
        bz[1,2,3,4,5,6,7,8]:=true;
        while head<tail do
        begin
                inc(head);
                for k:='A' to 'C' do
                begin
                        inc(tail);
                        team[tail]:=team[head];
                        with team[tail] do
                        begin
                                inc(tot);
                                for i:=1 to 8 do
                                begin
                                        state[i]:=team[head].state[jia[k,i]];
                                        t[i]:=state[i];
                                end;
                                st:=st+k;
                        end;
                        change;
                        if judge(team[tail].state) then
                        with team[tail] do
                        begin
                                writeln(tot);
                                for i:=1 to tot do
                                begin
                                        write(st[i]);
                                        if i mod 60=0 then writeln;
                                end;
                                halt;
                        end;
                end;
        end;
end.

这是我打的比较好看的一次代码了

为什么12348765我要搞成12345678,这个不难懂
因为这样处理起来比较方便
顺带一提,最上面的jia数组应该也不难懂吧?
A,B,C,分别三种转换方式,就像题里面说的一样

另,附一张图:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值