将任意图像增强模型与ultralytics中任意模型进行结合 (二)| yolo11与gdip模块、ipam的融合实践

ultralytics库代码总是在不断更新迭代,原来自行添加到ultralytics库的模型代码,随着更新的yolo模型发布,自行修改模型代码又要进行新一轮同步,这不是一个明智的操作。为此博主提出将任意图像增强模型与ultralytics中任意模型进行结合方式,前面仅是以低亮度图像修复模型SCINet为例,在这里以带雾图像增强模块gdip、ipam模块的与ultralytics库中最新模型yolo11的融合。

ultralytics 库代码更新
参考https://blog.csdn.net/tombosky/article/details/133861767 进行代码回退

# 暂存本地更改
git stash
# 与服务器代码进行合并
git pull origin main

1、模块保存

gdip-yolo与ia-seg都是一种将图像自适应模块插入模型前面,从而提升模型在特定数据下检测能力的网络结构。gdip-yolo提出了gdip模块,可以应用到大雾数据与低亮度数据(夜晚环境),然后用于目标检测训练;ia-seg将ia-yolo中的代码修改了一下修车了ipam模块,应用到低亮度数据(夜晚环境),然后用于语义分割训练。这两个项目都发布了预训练模型,我们可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值