【Pytorch实用教程】nn.Embedding和nn.EmbeddingBag用法详解

1. nn.Embedding

详细介绍
nn.Embedding 是一个简单的查找表,它将每个词或索引映射到一个固定大小的向量。常用于自然语言处理(NLP)中的词嵌入。给定一个索引列表,nn.Embedding 将返回对应的嵌入向量

构造函数参数

  • num_embeddings:词典的大小,即索引的总数。
  • embedding_dim:每个嵌入向量的维度。
  • padding_idx(可选):指定一个索引,该索引的向量会初始化为全零,并且在反向传播中不会更新。
  • max_norm(可选):如果提供了该参数,嵌入向量的范数将被限制在该值之内。
  • norm_type(可选):用于计算 max_norm 的范数类型,默认为 2。
  • scale_grad_by_freq(可选):如果设为 True,则根据词频缩放梯度。
  • sparse(可选):如果设为 True,则使用稀疏更新。

示例代码


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值