Java OpenCV 图像处理29.2 视频分析和对象跟踪 MIL

Java OpenCV 图像处理29.2 视频分析和对象跟踪 MIL

1 OpenCV 对象跟踪算法

算法 算法 特点
1 BOOSTING Tracker 基于 AdaBoost 算法。 适合于简单的对象跟踪任务。
算法较老,在复杂场景中表现一般。
2 KCF Tracker (Kernelized Correlation Filters) 基于核相关滤波器的算法。 计算速度快,适合实时应用。
对尺度变化和旋转的适应性较差。
3 TLD Tracker (Tracking-Learning-Detection) 结合了跟踪、学习和检测的三部分。 适合处理长时间跟踪和对象消失再出现的情况。
复杂度较高,运行速度较慢。
4 MedianFlow Tracker 基于光流法的中值流算法。 对预测跟踪位置的误差敏感,适合处理稳定运动的对象。
在快速运动或剧烈变化的背景下效果不佳。
5 GOTURN Tracker (Generic Object Tracking Using Regression Networks) 基于深度学习的回归网络。 不需要在线更新模型,跟踪效果稳定。
需要大量的训练数据,计算资源需求较高。
6 MOSSE Tracker (Minimum Output Sum of Squared Error) 基于最小输出平方误差的滤波器。 计算速度非常快,适合实时跟踪。
对噪声和光照变化敏感。
7 CSRT Tracker (Discriminative Correlation Filter with Channel and Spatial Reliability) 改进的相关滤波器,具有空间和通道可靠性。 在复杂背景下表现优异,对尺度变化有较好适应性。
计算量较大,速度较慢。
8 DaSiamRPN Tracker (Siamese Region Proposal Network) 基于孪生网络的区域建议方法。 能够处理快速运动和尺度变化。
需要预先训练好的模型,计算资源需求高。
9 MIL Tracker (Multiple Instance Learning) 基于多实例学习算法。 能够处理部分遮挡的问题。
在动态变化的背景下表现不佳。

2 Java 引入依赖

<dependency>
    <groupId>org.bytedeco</groupId>
    <artifactId>opencv-platform</artifactId>
    <version>4.9.0-1.5.10</version>
</dependency>

3 OpenCV 下载

OpenCV 下载地址
在这里插入图片描述

4 Java Open

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值