Java OpenCV 图像处理29.2 视频分析和对象跟踪 MIL
1 OpenCV 对象跟踪算法
算法 | 算法 | 特点 |
---|---|---|
1 BOOSTING Tracker | 基于 AdaBoost 算法。 | 适合于简单的对象跟踪任务。 算法较老,在复杂场景中表现一般。 |
2 KCF Tracker (Kernelized Correlation Filters) | 基于核相关滤波器的算法。 | 计算速度快,适合实时应用。 对尺度变化和旋转的适应性较差。 |
3 TLD Tracker (Tracking-Learning-Detection) | 结合了跟踪、学习和检测的三部分。 | 适合处理长时间跟踪和对象消失再出现的情况。 复杂度较高,运行速度较慢。 |
4 MedianFlow Tracker | 基于光流法的中值流算法。 | 对预测跟踪位置的误差敏感,适合处理稳定运动的对象。 在快速运动或剧烈变化的背景下效果不佳。 |
5 GOTURN Tracker (Generic Object Tracking Using Regression Networks) | 基于深度学习的回归网络。 | 不需要在线更新模型,跟踪效果稳定。 需要大量的训练数据,计算资源需求较高。 |
6 MOSSE Tracker (Minimum Output Sum of Squared Error) | 基于最小输出平方误差的滤波器。 | 计算速度非常快,适合实时跟踪。 对噪声和光照变化敏感。 |
7 CSRT Tracker (Discriminative Correlation Filter with Channel and Spatial Reliability) | 改进的相关滤波器,具有空间和通道可靠性。 | 在复杂背景下表现优异,对尺度变化有较好适应性。 计算量较大,速度较慢。 |
8 DaSiamRPN Tracker (Siamese Region Proposal Network) | 基于孪生网络的区域建议方法。 | 能够处理快速运动和尺度变化。 需要预先训练好的模型,计算资源需求高。 |
9 MIL Tracker (Multiple Instance Learning) | 基于多实例学习算法。 | 能够处理部分遮挡的问题。 在动态变化的背景下表现不佳。 |
2 Java 引入依赖
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>opencv-platform</artifactId>
<version>4.9.0-1.5.10</version>
</dependency>