Kotlin OpenCV 图像图像51图片轮廓获取

Kotlin OpenCV 图像图像51图片轮廓获取

在OpenCV库中,Imgproc.adaptiveThreshold、Imgproc.findContours 和 Imgproc.boundingRect 这三个方法在图像处理和分析中非常有用。以下是它们的详细作用:

Imgproc.adaptiveThreshold 解释
作用 该方法用于将灰度图像二值化。与普通的阈值处理不同,adaptiveThreshold 可以根据图像局部区域的亮度变化自适应地确定每个像素的阈值。
使用场景 适用于光照不均匀的图像,在全局阈值不能很好区分前景和背景时,adaptiveThreshold 可以生成更准确的二值图像。
src 输入的灰度图像。
dst 输出的二值图像。
maxValue 阈值分割后的最大值(通常为255)。
adaptiveMethod 自适应方法,可以是 ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C。
thresholdType 阈值类型,通常为 THRESH_BINARY 或 THRESH_BINARY_INV。
blockSize 用于计算阈值的邻域大小。
C 从计算出的平均值或加权平均值中减去的常数,用于微调。
Imgproc.findContours 解释
作用 该方法用于检测图像中的轮廓。它可以识别二值图像中的连通分量,并将这些连通分量的边缘表示为轮廓。
使用场景 常用于对象检测、形状分析、物体识别等任务中,是许多高层次图像分析算法的基础。
image 输入的二值图像,通常是经过阈值处理的结果。
contours 输出的轮廓列表,其中每个轮廓都是一个点的列表。
hierarchy 可选的层次结构信息,用于描述轮廓之间的嵌套关系。
mode 轮廓的检索模式,如 RETR_EXTERNAL(只检索外部轮廓)或 RETR_TREE(检索所有轮廓并重构嵌套层次)。
method 轮廓的近似方法,如 CHAIN_APPROX_SIMPLE(压缩水平、垂直和对角线段,保留端点)或 CHAIN_APPROX_NONE(保留所有点)。
Imgproc.boundingRect 解释
作用 该方法用于计算并返回包围特定点集或轮廓的最小矩形边框。
使用场景 常用于从图像中提取感兴趣区域(ROI),或进一步分析特定区域的内容。
points 输入的点集或轮廓,可以是一个 Mat 或 List 对象。
输出 返回一个 Rect 对象,表示包围点集的矩形框,包含位置和尺寸信息(即 x, y, width, height)。

Kotlin OpenCV 全部代码

package com.xu.com.xu.image

import<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值