大模型微调fine-tuning


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

大模型微调概述

大模型fine-tuning(微调)是一种重要的机器学习技术,特别是在处理自然语言处理(NLP)任务时广泛应用。它指在已经预训练好的大型深度学习模型基础上,使用新的、特定任务相关的数据集对模型进行进一步训练的过程。这种方法旨在使模型能够适应新的、具体的任务或领域,而无需从头开始训练一个全新的模型。

大模型微调主要流程

大模型fine-tuning流程主要包括以下几个步骤:

  • 1、预训练阶段:首先,使用大规模的数据集对模型进行预训练,使模型学习到通用的语言特征和知识。
  • 2、任务特定数据集准备:准备一个与目标任务相关的数据集,这个数据集通常比预训练使用的数据集小得多。
  • 3、模型调整:在预训练模型的基础上,根据新任务的需求进行必要的调整,如添加新的层(如分类层)、修改输出层等。
  • 4、微调训练:使用任务特定数据集对模型进行微调训练,通过反向传播算法更新模型参数,以适应新任务。
  • 5、评估与迭代:在微调完成后,使用验证集评估模型的性能,并根据需要进行迭代和调整。

大模型微调应用场景

大模型fine-tuning广泛应用于各种NLP任务中,例如:

  • 1、文本分类:如情感分析、垃圾邮件检测等。
  • 2、命名实体识别:从文本中识别出特定类型的实体,如人名、地名、机构名等。
  • 3、问答系统:构建能够回答用户问题的系统。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谷哥的小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值