Random Erasing&Cutout——两种相似的数据增强方式

本文深入解析RandomErasing和Cutout两种数据增强技术,它们通过随机遮挡图像部分区域来提升模型对遮挡数据的处理能力。RandomErasing在行人重识别等领域表现突出,而Cutout则受启发于dropout,旨在模拟输入图像的遮挡,两者在遮挡区域的处理上有细微差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文针对两种相似的数据增强方式——Random Erasing&Cutout进行解读。他们的相似点在于都是随机对输入图像遮挡一部分。

Random Erasing

在这里插入图片描述
论文下载链接:https://arxiv.xilesou.top/pdf/1708.04896.pdf
论文代码:https://github.com/zhunzhong07/Random-Erasing

Motivations

为了增强模型泛化能力,常常对原始数据做数据增强处理,常用的方式一般为random cropping,flipping等。
但是在现实场景中,遮挡问题一直都是一个难以处理和解决的问题。为了更好的实现对遮挡数据的模拟,利用Random Erasing的方式,将原数据集中一部分保持原样,另外一部分随机擦除一个矩形区域。

Methods

在这里插入图片描述
上图是对Random Erasing的一个简单样例,灰色区域表示擦除的部分。
具体实现算法为:
在这里插入图片描述
我们可以简单的解释为:
1) 设立五个超参数,分别表示原数据集中实施Random Erasing的概率P,擦除面积比率的下界sl和上界sh,擦除矩形长宽比的下界r1和上界r2。
2) 首先通过均匀分布得到一个概率P1,如果满足条件,实施擦除。
3) 擦除的过程如下:
通过均匀分布取样得到擦除矩形面积,以及长宽值。选择一个满足所有矩形部分都在图像内的左上角坐标,将这个矩形区域都设置为统一的和图像其他区域无关的纯色值。

Results

虽然十分简单,但是效果非常惊艳。
在图像分类任务中:
在这里插入图片描述在目标检测任务中:
在这里插入图片描述
其中,IRE,ORE和I+ORE表示Image-aware Random Erasing(对整张图片做擦除),Object-aware Random Erasing(对bounding box中的图片做擦除),Image and Object-aware Random Erasing(综合以上两种方式).
在行人重识别任务中:
在这里插入图片描述
其中,RE表示Random Erasing. Random Erasing已经成为行人重识别领域一个非常重要的数据增强方式,对处理遮挡问题非常有帮助,是涨分的利器。

Cutout

在这里插入图片描述
论文下载链接:https://arxiv.xilesou.top/pdf/1708.04552.pdf
代码链接:https://github.com/Dingzixiang/cutout

Motivations

这篇文章的出发点除了解决遮挡问题外,还有从dropout上得到启发(所以也称为Cutout)。众所周知,Dropout随机隐藏一些神经元,最后的网络模型相当于多个模型的集成。类似于dropout的思路,这篇文章将drop用在了输入图片上,并且drop掉连续的区域——即矩形区域。
以下是一个简易的样例(灰色部分为drop掉的区域):
在这里插入图片描述

Methods

作者首先尝试通过一些可视化技术,发现图片高激活区域,对这些区域进行擦除。但是最后发现这种方法和随机选一个区域遮挡效果差别不大,而且带来了额外的计算量,得不偿失,便舍去。
在这里插入图片描述
上图为早期的cutout擦除样例图,可以发现这种方法有针对性地擦除重要区域。(话说回来,尽管在这篇论文中该效果不是非常理想,但是利用图片高激活区域的工作非常多,也非常值得学习,一般采用的可视化方式为CAM/Grad-CAM)
本文最后采用的擦除方式为:利用固定大小的矩形对图像进行遮挡,在矩形范围内,所有的值都被设置为0,或者其他纯色值。而且擦除矩形区域存在一定概率不完全在原图像中的(文中设置为50%)。

Results

在C10,C10+,C100,C100+,SVHN数据集上的test error rates表现如下(其中C表示CIFAR):
在这里插入图片描述
通过上述的分析,我们发现这两种方法非常类似,出发点也惊人的相近(都考虑了遮挡的问题)。不仅如此,两篇论文发表时间为16NOV2017和29NOV2017,可能时间相差就一些就不好发表了(idea抄袭啥的。。。)。他们俩最主要的区别在于在cutout中,擦除矩形区域存在一定概率不完全在原图像中的。而在Random Erasing中,擦除矩形区域一定在原图像内。Cutout变相的实现了任意大小的擦除,以及保留更多重要区域。
那么,这两种方法那个更好呢?我在一篇论文中找到对比,iccv2019的《Batch DropBlock Network for Person Re-identification and Beyond》比较如下:
在这里插入图片描述
其中,RE,Cut分别表示Random Erasing/Cutout,以上指标越高越好。孰优孰劣,不好说,不过Cutout在更多情况下效果更好。这两种方法在用到自己的任务中,还得进行实验比较,才能得到更好的结果。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值