Interpretable Convolutional Neural Networks via Feedforward Design

郭老师的新论文介绍了一种创新方法,通过优化Saabtransform和偏置选择,显著提高了机器学习神经网络的运算效率。该方法聚焦于映射公式a与b的选择,采用电路理论概念进行输入向量处理,旨在推动机器学习领域的技术进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

郭老师的一篇新论文,很有创新性。极大地提升了机器学习的运算效率。

Saab transform and bias selection

关于在机器学习神经网络,其中的映射公式a与b的选择问题:

a的选择:

首先设置b=0,a的设置分为两个策略:


dc,ac借用于电路理论。dc是直流电,ac是交流电缩写。我们将输入向量作如下处理,直和是一种计算方法:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JensLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值