PIXELHOP : A SUCCESSIVE SUBSPACE LEARNING (SSL) METHOD FOR OBJECT CLASSIFICATION

本文提出了一种名为PixelHop的机器学习方法,该方法基于连续子空间学习(SSL),在MNIST、Fashion MNIST和CIFAR-10数据集上表现优于经典CNN模型。SSL包括四个关键步骤:近远邻域扩张、无监督降维、标签辅助回归(LAG)和特征连接与决策。PixelHop通过级联的子空间学习和避免线性多阶段方法的局限性,实现了高效的图像分类。实验展示了其在处理图像分类问题时的优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍了一种新的机器学习方法,称为连续子空间学习(SSL).以下我就挑重点的说,然后结合代码讲解一下:

SSL包含四个关键成分:

1) 连续的近远邻域扩张

2) 通过子空间逼近,实现无监督降维

3) 通过标签辅助回归(label-assisted regression:LAG)监督降维

4) 特征连接与决策。

A new machine learning methodology, called successive subspace learning (SSL), is introduced in
this work. SSL contains four key ingredients: 1) successive near-to-far neighborhood expansion; 2)
unsupervised dimension reduction via subspace approximation; 3) supervised dimension reduction via
label-assisted regression (LAG); and 4) feature concatenation and decision making. An image-based
obje

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JensLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值