Attention Map

本文参考:https://www.zhihu.com/search?type=content&q=attention%20map

https://www.zhihu.com/search?type=content&q=attention%20map

计算机视觉中的Attention Map

Attention Map是什么?

一种特征矩阵的计算方式,凝练出有特点的矩阵数据。

有什么作用?

这种注意力机制使得卷积运算中,更加关于有效的特征,忽略无效的特征。

实现原理是什么?

使用掩码(mask)实现,通过新一层的权重,强调重点。将图片数据中关键的特征标识出来,通过学习训练,让深度神经网络学到每一张新图片中需要关注的区域,也就形成了注意力。本质是希望通过学习得到一组可以作用在原图上的权重分布。

如下图所示:只有某些重要的位置有权重信息

类别有几种?

注意力有两个大的分类:软注意力( soft attention )和强注意力( hard attention )。

强注意力是一个随机的预测过程,更强调动态变化,同时其不可微,训练往往需要通过增强学习来完成。
软注意力的关键在于其是可微的,也就意味着可以计算梯度(梯度可以定义为一个函数的全部偏导数构成的向量),利用神经网络的训练方法获得。

最终会形成一种类似下图的效果:



 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JensLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值