FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image

本文提出FSA-Net,一种无标志点的单图像头部姿态估计方法,使用软阶段回归和细粒度结构映射,以减少计算量并提高准确性。与传统方法相比,FSA-Net在保持高精度的同时,模型大小减少了约100倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来源于2019A类会议CVPR的论文FSA-Net,对其中一部分进行翻译

摘要:

本文提出了一种基于单个图像的头部姿态估计方法。以往的方法往往是通过landmark或depth估计来预测头部姿态,计算量大。我们的方法是基于回归和特征聚集。为了得到一个紧凑的模型,我们采用了soft stagewise regression方案。现有的特征聚集方法将输入视为一组特征,从而忽略它们在特征图中的空间关系(我觉得在这里可以使用胶囊模型)。我们建议在聚合之前学习空间分组特性的细粒度结构映射。细粒度结构(fine-grained structure)提供基于部件的信息和集合值。通过在空间位置上利用可学习和不可学习的重要性,可以生成不同的模型变量并形成互补的整体。实验表明,该方法既能实现无标志点方法,又能实现基于标志点或深度估计的无标志点方法。在只有一个RGB帧作为输入的情况下,我们的方法甚至优于利用多模态信息(RGB-D,RGB时间)估计横摆角的方法。此外,我们的模型的内存开销比以前的方法小100倍。

介绍:

头部姿态研究很重要,其他的不多说了。

单幅图像的头部姿态估计是一个具有挑战性的问题。头部姿态是一个包含偏航角、俯仰角和横滚角的三维矢量。从图像估计头部姿势基本上需要学习二维和三维空间之间的映

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JensLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值