ABAP 类文档自动生成器:让注释成为可浏览的知识资产

在大型 SAP 项目里,开发团队交接频繁,ABAP Doc 注释往往散落在各个类与方法里,阅读效率低下。Class Documentation Generator(事务码 CLASS_DOCUGEN,底层程序 DOCUGENERATOR)把这些注释汇集为一组可离线浏览的 HTML 页面,效果类似 Java 世界里的 Javadoc

实际运用显示,这个工具能显著减少知识传递摩擦、加速 BAdI 实施参考,并为代码审计提供友好的入口。(SAP Community,

资源下载链接为: https://pan.xunlei.com/s/VOYaD-317q743E_7bSEaLSmlA1?pwd=x8id 在 MAP 目标检测里,mAP 值(平均精度均值)是评估模型性能的关键指标,计算需按步骤开展。首先得明确几个基础概念,像真实框(标注的目标位置与别)、预测框(模型输出的目标位置、别及置信度),还有用于判断预测是否准确的 IOU(交并比)阈值,常用阈值为 0.5,也会根据需求调整。 接着进行正负样本判定。把模型输出的所有预测框按置信度从高到低排序,之后逐个与同别真实框计算 IOU。若 IOU 大于设定阈值,且该真实框未被其他预测框匹配,这个预测框就判定为正样本(TP);若 IOU 小于阈值,或匹配的真实框已被占用,就判定为负样本(FP);没被任何预测框匹配的真实框,则视为漏检的正样本(FN)。 然后计算单别的精度(Precision)和召回率(Recall)。精度是正样本数量除以正样本与负样本数量之和(TP/(TP+FP)),召回率是正样本数量除以正样本与漏检正样本数量之和(TP/(TP+FN))。通过调整置信度阈值,可得到多组精度和召回率数据,以召回率为横轴、精度为纵轴绘制 P-R 曲线,曲线下面积就是该别的 AP 值(平均精度)。 最后计算 mAP 值,将所有别的 AP 值求平均,结果就是 mAP 值。mAP 值越高,说明模型在各别目标检测中的综合性能越好,能更准确地识别目标并减少漏检、误检情况。不同场景下可能会采用不同的 IOU 阈值计算 mAP,比如 [email protected] 表示 IOU 取 0.5 时的计算结果,[email protected]:0.95 则表示在 IOU 从 0.5 到 0.95、步长 0.05 的多个阈值下计算 AP 后再求平均,以此更全面地评估模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值