pytorch损失函数之nn.CrossEntropyLoss()、nn.NLLLoss()

本文详细介绍了PyTorch中的nn.CrossEntropyLoss函数,它是nn.logSoftmax和nn.NLLLoss的组合,简化了网络训练过程中的损失计算。通过nn.CrossEntropyLoss,可以直接计算分类任务的损失,无需单独使用softmax和负对数似然损失。博客深入探讨了交叉熵损失在深度学习中的作用,并解释了其数学公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自:https://blog.csdn.net/genous110/article/details/89456323,本文只做个人记录学习使用,版权归原作者所有。

 

nn.CrossEntropyLoss()是nn.logSoftmax()和nn.NLLLoss()的整合,可以直接使用它来替换网络中的两个操作。

在这里插入图片描述

在这里插入图片描述

所以可以得到下面的结论:

在这里插入图片描述

下面解释一下上面的第一个公式,loss(x,class)= …, 这个公式。
pytorch损失函数之nn.BCELoss()(为什么用交叉熵作为损失函数)(转)

在这里插入图片描述

 

在这里插入图片描述

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值