为了便于理解,我们可以将大模型想象成一个勤奋的学生,这个学生通过阅读大量的书籍和资料来学习知识。而人类大脑则更像是一位经验丰富的教师,它不仅能学习,还能创造新的想法并解决复杂的问题。
大模型几乎阅读了所有人类说过的话,这就是“机器学习”。在处理文本时,大模型通常会将输入的文本分解成一个个的Token。这些Token可以是单词、短语或者其他语言单位,它们被用于模型的训练和推理过程中。每个Token都被转换成数字,大模型通过学习这些数字之间的关系来理解和生成语言。
在训练过程中,大模型会把不同token出现的概率存入“神经网络”文件,保存的数据就是“参数”。通常情况下,参数越多,意味着大模型能够学习和记住更多的信息,其表现能力和处理复杂问题能力也越强。
在推理过程中,我们给推理程序若干token,程序会加载大模型权重文件,算出概率最高的下一个token是什么。用生成的token,再加上上文,就能继续生成下一个token。以此类推,生成更多文字。
AI是人类的好帮手,但也存在“幻觉”,有时候甚至会“一本正经地胡说八道”。这是因为大模型对没有确切答案的问题做出了不合逻辑的回答。因此,针对大模型的输出,我们人类应该进行严谨评估和测试,并对大模型进行持续优化,确保其输出质量和准确性。