华为OD机试真题——数字加减游戏(2025A卷:200分)Java/python/JavaScript/C/C++/GO最佳实现

在这里插入图片描述

2025 A卷 200分 题型

本专栏内全部题目均提供Java、python、JavaScript、C、C++、GO六种语言的最佳实现方式;
并且每种语言均涵盖详细的问题分析、解题思路、代码实现、代码详解、3个测试用例以及综合分析;
本文收录于专栏:《2025华为OD真题目录+全流程解析+备考攻略+经验分享

华为OD机试真题《数字加减游戏》:


文章快捷目录

题目描述及说明

Java

python

JavaScript

C

GO


题目名称:数字加减游戏


  • 知识点:数学(模运算、枚举)
  • 时间限制:1秒
  • 空间限制:256MB
  • 限定语言:不限

题目描述

小明在玩一个数字加减游戏,只使用加法或者减法,将一个数字 s 变成数字 t。每个回合,小明可以用当前的数字加上或减去一个数字。现在有两种数字可以用来加减,分别为 aba ≠ b),其中 b 没有使用次数限制,而 a 的使用次数需最小化。
请问小明最少需要用多少次 a,才能将数字 s 变成数字 t?题目保证 s 一定能变成 t

输入描述

输入的唯一一行包含四个正整数 s, t, a, b(1 ≤ s, t, a, b ≤ 10^5,且 a ≠ b)。

输出描述

输出的唯一一行包含一个整数,表示最少需要使用 a 的次数。

示例

输入

1 10 5 2  

输出

1  

说明:初始值 1 加一次 a 变成 6,然后加两次 b 变为 10,因此 a 的使用次数为 1 次。


Java

问题分析

小明需要通过加减操作将数字 s 变成 t,使用两种数字 a 和 b,其中 a 的使用次数需最小化。我们需要找到最少使用 a 的次数。


解题思路

  1. 差值计算:计算目标差值 d = |t - s|。
  2. 直接使用 b:如果 d 能被 b 整除,则无需使用 a。
  3. 模运算与贪心策略:若不能直接使用 b,则通过模运算和扩展欧几里得算法找到满足条件的最小 a 使用次数。
    • 将问题转化为求线性同余方程,找到满足条件的最小正整数解。
    • 使用扩展欧几里得算法求模逆元,调整解的范围以得到最小绝对值。

代码实现

import java.util.Scanner;

public class Main {
   
    public static void main(String[] args) {
   
        Scanner sc = new Scanner(System.in);
        int s = sc.nextInt();
        int t = sc.nextInt();
        int a = sc.nextInt();
        int b = sc.nextInt();
        int d = Math.abs(t - s);
        
        if (d == 0) {
   
            System.out.println(0);
            return;
        }
        if (d % b == 0) {
   
            System.out.println(0);
            return;
        }
        
        int g = gcd(a, b);
        if (d % g != 0) {
   
            System.out.println(0);
            return;
        }
        
        int aDivG = a / g;
        int bDivG = b / g;
        int dDivG = d / g;
        
        int inv;
        try {
   
            inv = modInverse(aDivG, bDivG);
        } catch (ArithmeticException e) {
   
            System.out.println(0);
            return;
        }
        
        int x0 = (dDivG * inv) % bDivG;
        int mod = bDivG;
        x0 = (x0 % mod + mod) % mod;
        if (x0 > mod / 2) {
   
            x0 -= mod;
        }
        int k = Math.abs(x0);
        System.out.println(k);
    }
    
    private static int gcd(int a, int b) {
   
        return b == 0 ? a : gcd(b, a % b);
    }
    
    private static int modInverse(int a, int m) {
   
        int[] res = extendedGcd(a, m);
        if (res[0] != 1) {
   
            throw new ArithmeticException("逆元不存在");
        }
        int x = res[1];
        return (x % m + m) % m;
    }
    
    private static int[] extendedGcd(int a, int b) {
   
        if (b == 0) {
   
            return new int[]{
   a, 1, 0};
        } else {
   
            int[] res = extendedGcd(b, a % b);
            int gcd = res[0], x1 = res[1], y1 = res[2];
            int x = y1;
            int y = x1 - (a / b) * y1;
            return new int[]{
   gcd, x, y};
        }
    }
}

代码详解

  1. 输入处理:读取 s, t, a, b,计算差值 d = |t - s|。
  2. 直接返回条件:若差值为0或能被 b 整除,直接返回0。
  3. 最大公约数:计算 a 和 b 的最大公约数 g。
  4. 模逆元计算:使用扩展欧几里得算法求 a/g 在模 b/g 下的逆元。
  5. 调整解范围:将解调整到模的对称范围,确保绝对值最小。
  6. 输出结果:计算并输出最小的 a 使用次数。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪元A梦

再小的支持也是一种动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值