文章目录
-
-
-
- 一、基础 API
-
- 1. **Graph(图)**
- 2. **Session(会话)**
- 3. **Tensor(张量)**
- 4. **Operation(操作)**
- 二、高级 API
-
- 1. **加载预训练模型**
- 2. **训练模型**
- 3. **推理**
- 4. **保存和恢复模型**
- 三、扩展功能
-
- 1. **分布式训练**
- 2. **量化**
- 3. **服务化**
-
-
一、基础 API
1. Graph(图)
Graph
类代表了计算图,它是所有操作(如矩阵乘法、加法等)和张量(数据容器)之间的依赖关系的表示形式。你可以通过 Graph
来定义模型结构。
import org.tensorflow.Graph;
public class GraphExample {
public static void main(String[] args) {
// 创建一个新的计算图
try (Graph g = new Graph()) {
// 在这里添加节点和边...
System.out.println("Created a new graph.");
}
}
}
2. Session(会话)
Session
是执行计算图的地方。你可以通过它来运行特定的操作并获取输出结果。
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.types.TFloat32;
public class SessionExample {
public static void main(String[] args) {
try (Graph g = new Graph();
Session sess = new Session(g)) {
// 定义一些简单的操作
sess.runner()
.feed("input", Tensor.create(2.0f, TFloat32.DTYPE))
.fetch("output")
.run();
}
}
}
3. Tensor(张量)
Tensor
是 TensorFlow 中的数据容器,可以看作是多维数组。它用于在计算图的不同节点之间传递数据。
import org.tensorflow.Tensor;
import org.tensorflow.types.TFloat32;
public class TensorExample {
public static void main(String[] args) {
// 创建一个包含单个浮点数的张量
try (Tensor<TFloat32> t = TFloat32.scalarOf(42.0f)) {
System.out.println(t.data().asFloats());
}
}
}
4. Operation(操作)
Operation
表示图中的一个节点,它可以是一个算术运算、激活函数或者其他类型的转换。你可以在 Graph
上创建 Operation
实例。
import org.tensorflow.Graph;
import org.tensorflow.Operation;
import org.tensorflow.Output;
import org.tensorflow.op.Ops;
import org.tensorflow.types.TFloat32;
public class OperationExample {
public static void main(String[] args) {
try (Graph g = new Graph()) {
Ops tf = Ops.create(g);
// 创建两个输入占位符
Output<TFloat32> x = tf.placeholder(TFloat32.class).asOutput();
Output<TFloat32> y = tf.placeholder(TFloat32.class).asOutput();
// 定义加法操作
Operation addOp = tf.math.add(x, y).asOutput