Java 中 TensorFlow API 详解

文章目录

        • 一、基础 API
          • 1. **Graph(图)**
          • 2. **Session(会话)**
          • 3. **Tensor(张量)**
          • 4. **Operation(操作)**
        • 二、高级 API
          • 1. **加载预训练模型**
          • 2. **训练模型**
          • 3. **推理**
          • 4. **保存和恢复模型**
        • 三、扩展功能
          • 1. **分布式训练**
          • 2. **量化**
          • 3. **服务化**

一、基础 API
1. Graph(图)

Graph 类代表了计算图,它是所有操作(如矩阵乘法、加法等)和张量(数据容器)之间的依赖关系的表示形式。你可以通过 Graph 来定义模型结构。

import org.tensorflow.Graph;

public class GraphExample {
   
   
    public static void main(String[] args) {
   
   
        // 创建一个新的计算图
        try (Graph g = new Graph()) {
   
   
            // 在这里添加节点和边...
            System.out.println("Created a new graph.");
        }
    }
}
2. Session(会话)

Session 是执行计算图的地方。你可以通过它来运行特定的操作并获取输出结果。

import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.types.TFloat32;

public class SessionExample {
   
   
    public static void main(String[] args) {
   
   
        try (Graph g = new Graph();
             Session sess = new Session(g)) {
   
   
            
            // 定义一些简单的操作
            sess.runner()
                .feed("input", Tensor.create(2.0f, TFloat32.DTYPE))
                .fetch("output")
                .run();
        }
    }
}
3. Tensor(张量)

Tensor 是 TensorFlow 中的数据容器,可以看作是多维数组。它用于在计算图的不同节点之间传递数据。

import org.tensorflow.Tensor;
import org.tensorflow.types.TFloat32;

public class TensorExample {
   
   
    public static void main(String[] args) {
   
   
        // 创建一个包含单个浮点数的张量
        try (Tensor<TFloat32> t = TFloat32.scalarOf(42.0f)) {
   
   
            System.out.println(t.data().asFloats());
        }
    }
}
4. Operation(操作)

Operation 表示图中的一个节点,它可以是一个算术运算、激活函数或者其他类型的转换。你可以在 Graph 上创建 Operation 实例。

import org.tensorflow.Graph;
import org.tensorflow.Operation;
import org.tensorflow.Output;
import org.tensorflow.op.Ops;
import org.tensorflow.types.TFloat32;

public class OperationExample {
   
   
    public static void main(String[] args) {
   
   
        try (Graph g = new Graph()) {
   
   
            Ops tf = Ops.create(g);
            
            // 创建两个输入占位符
            Output<TFloat32> x = tf.placeholder(TFloat32.class).asOutput();
            Output<TFloat32> y = tf.placeholder(TFloat32.class).asOutput();
            
            // 定义加法操作
            Operation addOp = tf.math.add(x, y).asOutput
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图苑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值