大模型—— FastGPT 知识库无缝集成到 n8n 工作流 (基于 MCP 协议)
背景:n8n 与 RAG 知识库集成的挑战
n8n 作为一款强大的开源自动化工作流工具,正获得越来越多用户的青睐。它由前《加勒比海盗》视觉设计师 Jan Oberhauser 于 2019 年创立,旨在提供比 Zapier 等工具更灵活、成本更低的自动化方案。 n8n 秉持“自由可持续,开放且务实”的理念,其核心在于通过 可视化与代码 双模式,让用户能够连接不同应用,实现复杂流程的自动化(官方文档:https://docs.n8n.io/)。用户熟悉后,用其构建简单的工作流通常相当快捷,并且支持一键将工作流发布至公网,提供了极大的便利性。
n8n 常被形容为“自动化领域的乐高”,强调其灵活性和组合能力。
然而,在 AI 应用日益普及的背景下,一个常见需求浮出水面:如何在 n8n 中高效地集成 RAG(Retrieval-Augmented Generation,检索增强生成)知识库?RAG 是一种结合了信息检索与文本生成的技术,能让大型语言模型在回答问题时,参考外部知识库,从而提供更准确、更具上下文的答案。
直接在 n8n 中构建 RAG 知识库被证实是一个相对复杂的过程。这通常需要开发者手动搭建两个独立的工作流:一个用于处理文件上传、向量化并存入数据库,另一个用于实现基于 RAG 的问答交互。