Logility采购管理模块二次开发
1. 采购计划自动化
1.1 采购计划生成原理
在纺织品供应链管理中,采购计划的生成是一个关键环节。Logility采购管理模块通过分析需求预测、库存水平、供应商能力等数据,自动生成最优的采购计划。这一过程涉及到多个步骤和算法,主要包括需求预测、库存优化、供应商选择和订单生成。
需求预测
需求预测是采购计划生成的基础。Logility使用历史销售数据、市场趋势、季节性因素等信息,通过统计模型和机器学习算法预测未来的需求。常见的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
例子:使用Python进行需求预测
假设我们有过去12个月的销售数据,我们可以使用Python的pandas
库和statsmodels
库进行ARIMA模型预测。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
# 假设销售数据存储在一个CSV文件中
data = pd.read_csv('sales_data.csv')
data['date'] = pd.to_datetime(data['date'])
data.set_index('date', inplace=True)
# 检查数据
print(data.head())
# 绘制历史销售数据
plt.figure(figsize=(10, 6))
plt.plot(data['sales'], label='Sales Data')
plt.title('Historical Sales Data')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.legend()
plt.show()
# 拟合ARIMA模型
model = ARIMA(data['sales'], order=(5,1,0))
model_fit = model.fit()
# 预测未来12个月的销售
forecast = model_fit.forecast(steps=12)
print(forecast)
# 绘制预测结果
plt.figure(figsize=(10, 6))
plt.plot(data['sales'], label='Historical Sales')
plt.plot(forecast, label='Forecasted Sales', color='red')
plt.title('Sales Forecast')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.legend()
plt.show()
1.2 库存优化
库存优化的目标是在满足客户需求的同时,最小化库存成本。Logility通过库存模型和优化算法,确定最佳的库存水平。常用的库存模型包括经济订货量(EOQ)模型、安全库存模型和再订货点(ROP)模型等。
经济订货量(EOQ)模型
EOQ模型用于确定每次采购的最优数量,以最小化总成本。总成本包括采购成本、库存持有成本和缺货成本。
例子:使用Python计算EOQ
假设我们有以下参数:
-
年需求量(D):10000件
-
每次订货成本(S):500元
-
每件商品的年持有成本(H):10元
# 定义参数
D = 10000 # 年需求量
S = 500 # 每次订货成本
H = 10 # 每件商品的年持有成本
# 计算EOQ
EOQ = np.sqrt((2 * D * S) / H)
print(f"经济订货量 (EOQ): {EOQ:.2f} 件")
# 计算年总成本
total_cost = (D / EOQ) * S + (EOQ / 2) * H
print(f"年总成本: {total_cost:.2f} 元")
1.3 供应商选择
供应商选择是采购计划中的一个重要环节。Logility通过评估供应商的多个指标,如价格、质量、交货时间、可靠性等,选择最优的供应商。常用的供应商选择方法包括多属性决策法(MADM)和层次分析法(AHP)。
多属性决策法(MADM)
MADM通过将多个属性进行量化和加权,选择最优的供应商。常见的MADM方法包括TOPSIS、VIKOR和ELECTRE等。
例子:使用Python进行TOPSIS供应商选择
假设我们有如下供应商数据:
-
供应商A:价格=100元,质量=8,交货时间=10天,可靠性=9
-
供应商B:价格=120元,质量=9,交货时间=8天,可靠性=8
-
供应商C:价格=110元,质量=8.5,交货时间=9天,可靠性=8.5
import numpy as np
# 定义供应商数据
data = np.array([
[100, 8, 10, 9],
[120, 9, 8, 8],
[110, 8.5, 9, 8.5]
])
# 定义权重
weights = [0.4, 0.3, 0.2, 0.1]
# 定义属性类型(1表示效益型,-1表示成本型)
attribute_types = [1, 1, -1, 1]
# 归一化数据
normalized_data = data / np.sqrt((data ** 2).sum(axis=0))
# 计算加权归一化数据
weighted_normalized_data = normalized_data * weights
# 确定正理想解和负理想解
positive_ideal_solution = np.where(attribute_types == 1, weighted_normalized_data.max(axis=0), weighted_normalized_data.min(axis=0))
negative_ideal_solution = np.where(attribute_types == 1, weighted_normalized_data.min(axis=0), weighted_normalized_data.max(axis=0))
# 计算每个供应商到正理想解和负理想解的距离
distance_to_positive_ideal = np.sqrt(((weighted_normalized_data - positive_ideal_solution) ** 2).sum(axis=1))
distance_to_negative_ideal = np.sqrt(((weighted_normalized_data - negative_ideal_solution) ** 2).sum(axis=1))
# 计算相对接近度
closeness = distance_to_negative_ideal / (distance_to_positive_ideal + distance_to_negative_ideal)
# 输出供应商的相对接近度
print("供应商的相对接近度:")
for i, supplier in enumerate(['A', 'B', 'C']):
print(f"供应商 {supplier}: {closeness[i]:.4f}")
# 选择最优供应商
best_supplier = np.argmax(closeness)
print(f"最优供应商: {['A', 'B', 'C'][best_supplier]}")
1.4 订单生成
订单生成是采购计划的最终步骤。Logility根据生成的采购计划和选定的供应商,生成采购订单。订单生成涉及到订单数量、交货时间和付款条件等多个参数。
生成采购订单
假设我们已经生成了采购计划,并选择了最优供应商,接下来需要生成具体的采购订单。我们可以使用Python的pandas
库来处理订单数据。
例子:生成采购订单
假设我们有以下采购计划数据:
-
采购计划1:采购数量=500件,交货时间=2023-10-01
-
采购计划2:采购数量=300件,交货时间=2023-10-15
-
采购计划3:采购数量=200件,交货时间=2023-11-01
import pandas as pd
# 定义采购计划数据
procurement_plan = pd.DataFrame({
'order_quantity': [500, 300, 200],
'delivery_date': ['2023-10-01', '2023-10-15', '2023-11-01']
})
# 定义供应商信息
supplier_info = pd.DataFrame({
'supplier': ['A', 'B', 'C'],
'price_per_unit': [100, 120, 110],
'lead_time': [10, 8, 9],
'payment_terms': ['30天', '45天', '60天']
})
# 选择最优供应商
best_supplier = 'A'
# 生成采购订单
procurement_order = procurement_plan.copy()
procurement_order['supplier'] = best_supplier
procurement_order['price_per_unit'] = supplier_info.loc[supplier_info['supplier'] == best_supplier, 'price_per_unit'].values[0]
procurement_order['total_cost'] = procurement_order['order_quantity'] * procurement_order['price_per_unit']
procurement_order['lead_time'] = supplier_info.loc[supplier_info['supplier'] == best_supplier, 'lead_time'].values[0]
procurement_order['payment_terms'] = supplier_info.loc[supplier_info['supplier'] == best_supplier, 'payment_terms'].values[0]
# 输出采购订单
print(procurement_order)
2. 采购订单管理
2.1 采购订单状态跟踪
在Logility采购管理模块中,采购订单的状态跟踪是确保供应链顺畅的关键。通过实时监控订单的状态,企业可以及时发现并解决潜在问题,如延迟交货、质量问题等。
订单状态跟踪系统
订单状态跟踪系统通常包括订单创建、订单确认、订单发货、订单接收等多个环节。每个环节都需要记录相应的状态信息,如时间戳、操作人员、备注等。
例子:使用Python和SQLite进行订单状态跟踪
假设我们有一个订单状态跟踪系统,使用SQLite数据库存储订单状态信息。
import sqlite3
import pandas as pd
# 连接到SQLite数据库
conn = sqlite3.connect('procurement_orders.db')
cursor = conn.cursor()
# 创建订单状态跟踪表
cursor.execute('''
CREATE TABLE IF NOT EXISTS order_status (
order_id INTEGER PRIMARY KEY,
order_quantity INTEGER,
supplier TEXT,
status TEXT,
timestamp DATETIME,
operator TEXT,
remarks TEXT
)
''')
# 插入初始订单状态
initial_orders = [
(1, 500, 'A', '创建', '2023-09-01 10:00:00', '张三', '第一笔订单'),
(2, 300, 'A', '创建', '2023-09-02 11:00:00', '李四', '第二笔订单'),
(3, 200, 'A', '创建', '2023-09-03 12:00:00', '王五', '第三笔订单')
]
cursor.executemany('INSERT INTO order_status (order_id, order_quantity, supplier, status, timestamp, operator, remarks) VALUES (?, ?, ?, ?, ?, ?, ?)', initial_orders)
conn.commit()
# 更新订单状态
updated_orders = [
(1, '确认', '2023-09-02 14:00:00', '张三', '确认订单'),
(2, '确认', '2023-09-03 15:00:00', '李四', '确认订单'),
(3, '确认', '2023-09-04 16:00:00', '王五', '确认订单')
]
cursor.executemany('UPDATE order_status SET status = ?, timestamp = ?, operator = ?, remarks = ? WHERE order_id = ?', updated_orders)
conn.commit()
# 查询订单状态
query = "SELECT * FROM order_status"
order_status = pd.read_sql_query(query, conn)
# 输出订单状态
print(order_status)
2.2 采购订单异常处理
在采购订单的执行过程中,可能会遇到各种异常情况,如供应商延迟交货、货物损坏等。Logility采购管理模块提供了异常处理机制,帮助企业及时应对这些情况。
异常处理流程
异常处理流程通常包括以下几个步骤:
-
异常检测:通过实时监控订单状态,检测异常情况。
-
异常记录:记录异常情况的详细信息,包括原因、影响范围等。
-
异常处理:根据异常类型和影响范围,采取相应的处理措施。
-
异常报告:生成异常报告,供管理层审阅和决策。
例子:使用Python处理采购订单异常
假设我们有一个订单异常处理系统,使用Python和SQLite数据库进行异常记录和处理。
import sqlite3
import pandas as pd
# 连接到SQLite数据库
conn = sqlite3.connect('procurement_orders.db')
cursor = conn.cursor()
# 创建订单异常表
cursor.execute('''
CREATE TABLE IF NOT EXISTS order_exceptions (
exception_id INTEGER PRIMARY KEY,
order_id INTEGER,
exception_type TEXT,
reason TEXT,
timestamp DATETIME,
operator TEXT,
status TEXT,
remarks TEXT
)
''')
# 插入初始订单异常
initial_exceptions = [
(1, 1, '延迟交货', '供应商A生产延迟', '2023-09-25 10:00:00', '张三', '未处理', '供应商A生产延迟,预计延误2天'),
(2, 2, '货物损坏', '运输过程中损坏', '2023-09-26 11:00:00', '李四', '未处理', '运输过程中损坏,需要重新发货')
]
cursor.executemany('INSERT INTO order_exceptions (exception_id, order_id, exception_type, reason, timestamp, operator, status, remarks) VALUES (?, ?, ?, ?, ?, ?, ?, ?)', initial_exceptions)
conn.commit()
# 更新订单异常状态
updated_exceptions = [
(1, '处理中', '已联系供应商解决问题'),
(2, '处理中', '已联系物流公司重新发货')
]
cursor.executemany('UPDATE order_exceptions SET status = ?, remarks = ? WHERE exception_id = ?', updated_exceptions)
conn.commit()
# 查询订单异常
query = "SELECT * FROM order_exceptions"
order_exceptions = pd.read_sql_query(query, conn)
# 输出订单异常
print(order_exceptions)
2.3 采购订单审批流程
采购订单的审批流程是确保订单合理性和合规性的关键。Logility采购管理模块提供了灵活的审批流程配置,支持多级审批和自定义审批规则。
审批流程配置
审批流程配置通常包括以下几个步骤:
-
定义审批级别:确定订单审批的层级,如一级审批、二级审批等。
-
配置审批规则:根据订单金额、供应商类型等条件,配置不同的审批规则。
-
实现审批流程:通过编程实现审批流程的自动化,确保订单在各层级之间的流转。
例子:使用Python实现多级审批流程
假设我们有一个多级审批系统,使用Python和SQLite数据库进行审批流程管理。
import sqlite3
import pandas as pd
# 连接到SQLite数据库
conn = sqlite3.connect('procurement_orders.db')
cursor = conn.cursor()
# 创建订单审批表
cursor.execute('''
CREATE TABLE IF NOT EXISTS order_approvals (
approval_id INTEGER PRIMARY KEY,
order_id INTEGER,
approval_level INTEGER,
approver TEXT,
status TEXT,
timestamp DATETIME,
remarks TEXT
)
''')
# 插入初始订单审批
initial_approvals = [
(1, 1, 1, '张三', '待审批', '2023-09-01 10:00:00', '一级审批'),
(2, 2, 1, '李四', '待审批', '2023-09-02 11:00:00', '一级审批'),
(3, 3, 1, '王五', '待审批', '2023-09-03 12:00:00', '一级审批')
]
cursor.executemany('INSERT INTO order_approvals (approval_id, order_id, approval_level, approver, status, timestamp, remarks) VALUES (?, ?, ?, ?, ?, ?, ?)', initial_approvals)
conn.commit()
# 定义审批规则
def approve_order(order_id, approval_level, approver):
if approval_level == 1:
# 一级审批
cursor.execute('UPDATE order_approvals SET status = ?, timestamp = ?, remarks = ? WHERE order_id = ? AND approval_level = ?', ('已审批', '2023-09-04 10:00:00', '一级审批通过', order_id, 1))
conn.commit()
# 检查是否需要二级审批
cursor.execute('SELECT order_quantity FROM order_status WHERE order_id = ?', (order_id,))
order_quantity = cursor.fetchone()[0]
if order_quantity > 500:
# 需要二级审批
cursor.execute('INSERT INTO order_approvals (order_id, approval_level, approver, status, timestamp, remarks) VALUES (?, ?, ?, ?, ?, ?)', (order_id, 2, '赵六', '待审批', '2023-09-04 11:00:00', '二级审批'))
conn.commit()
elif approval_level == 2:
# 二级审批
cursor.execute('UPDATE order_approvals SET status = ?, timestamp = ?, remarks = ? WHERE order_id = ? AND approval_level = ?', ('已审批', '2023-09-05 10:00:00', '二级审批通过', order_id, 2))
conn.commit()
# 审批订单
approve_order(1, 1, '张三')
approve_order(2, 1, '李四')
approve_order(3, 1, '王五')
# 查询订单审批
query = "SELECT * FROM order_approvals"
order_approvals = pd.read_sql_query(query, conn)
# 输出订单审批
print(order_approvals)
3. 采购成本控制
3.1 采购成本分析
采购成本控制是确保企业利润最大化的重要环节。Logility采购管理模块提供了详细的采购成本分析功能,帮助企业识别成本控制的关键点。通过分析采购成本,企业可以优化采购策略,减少不必要的支出,提高整体效益。
采购成本分析方法
采购成本分析通常包括以下几个方面:
-
直接成本:原材料成本、运输成本等。
-
间接成本:管理费用、仓储费用等。
-
总成本:直接成本和间接成本的总和。
例子:使用Python进行采购成本分析
假设我们有以下采购成本数据:
-
供应商A:原材料成本=100元/件,运输成本=20元/件,管理费用=5000元,仓储费用=1000元
-
供应商B:原材料成本=120元/件,运输成本=15元/件,管理费用=6000元,仓储费用=1500元
-
供应商C:原材料成本=110元/件,运输成本=18元/件,管理费用=5500元,仓储费用=1200元
我们可以使用Python的pandas
库和numpy
库来计算和分析这些成本。
import pandas as pd
import numpy as np
# 定义供应商成本数据
cost_data = pd.DataFrame({
'supplier': ['A', 'B', 'C'],
'raw_material_cost_per_unit': [100, 120, 110],
'transport_cost_per_unit': [20, 15, 18],
'management_fee': [5000, 6000, 5500],
'storage_cost': [1000, 1500, 1200]
})
# 定义采购计划数据
procurement_plan = pd.DataFrame({
'order_quantity': [500, 300, 200],
'supplier': ['A', 'A', 'A']
})
# 计算每个订单的总成本
def calculate_total_cost(plan, cost_data):
total_cost = []
for index, row in plan.iterrows():
supplier = row['supplier']
order_quantity = row['order_quantity']
raw_material_cost_per_unit = cost_data.loc[cost_data['supplier'] == supplier, 'raw_material_cost_per_unit'].values[0]
transport_cost_per_unit = cost_data.loc[cost_data['supplier'] == supplier, 'transport_cost_per_unit'].values[0]
management_fee = cost_data.loc[cost_data['supplier'] == supplier, 'management_fee'].values[0]
storage_cost = cost_data.loc[cost_data['supplier'] == supplier, 'storage_cost'].values[0]
direct_cost = (raw_material_cost_per_unit + transport_cost_per_unit) * order_quantity
indirect_cost = (management_fee + storage_cost) / len(plan)
total_cost.append(direct_cost + indirect_cost)
return total_cost
# 计算总成本
procurement_plan['total_cost'] = calculate_total_cost(procurement_plan, cost_data)
# 输出采购计划及其总成本
print(procurement_plan)
# 总成本汇总
total_cost_summary = procurement_plan['total_cost'].sum()
print(f"总成本汇总: {total_cost_summary:.2f} 元")
3.2 采购成本优化
采购成本优化的目标是通过合理的采购策略和供应商管理,降低采购成本。Logility采购管理模块提供了多种成本优化工具和方法,如批量采购、长期合同、供应商谈判等。
批量采购
批量采购可以降低单位成本,提高采购效率。通过分析历史采购数据和未来的采购需求,企业可以确定最优的批量采购策略。
例子:使用Python进行批量采购优化
假设我们有以下数据:
-
年需求量(D):10000件
-
每次订货成本(S):500元
-
每件商品的年持有成本(H):10元
-
供应商A的批量折扣信息:500件以上,每件98元;1000件以上,每件95元
# 定义参数
D = 10000 # 年需求量
S = 500 # 每次订货成本
H = 10 # 每件商品的年持有成本
# 定义供应商A的批量折扣信息
discount_info = {
500: 98,
1000: 95
}
# 计算批量采购的最优批量
def calculate_optimal_batch_quantity(D, S, H, discount_info):
optimal_quantity = None
min_total_cost = float('inf')
for quantity, price in discount_info.items():
EOQ = np.sqrt((2 * D * S) / H)
if EOQ >= quantity:
total_cost = (D / EOQ) * S + (EOQ / 2) * H + D * price
if total_cost < min_total_cost:
min_total_cost = total_cost
optimal_quantity = quantity
else:
total_cost = (D / quantity) * S + (quantity / 2) * H + D * price
if total_cost < min_total_cost:
min_total_cost = total_cost
optimal_quantity = quantity
return optimal_quantity, min_total_cost
# 计算最优批量
optimal_quantity, min_total_cost = calculate_optimal_batch_quantity(D, S, H, discount_info)
print(f"最优批量采购数量: {optimal_quantity} 件")
print(f"最低总成本: {min_total_cost:.2f} 元")
3.3 供应商谈判
供应商谈判是降低采购成本的有效手段。通过与供应商进行谈判,企业可以争取到更优惠的价格、更好的付款条件等。Logility采购管理模块提供了谈判管理工具,帮助企业记录和管理谈判过程。
谈判管理工具
谈判管理工具通常包括以下几个功能:
-
记录谈判历史:记录每次谈判的时间、地点、参与人员、谈判结果等信息。
-
分析谈判效果:通过历史数据,分析谈判效果,优化未来的谈判策略。
-
生成谈判报告:生成详细的谈判报告,供管理层审阅和决策。
例子:使用Python记录和分析谈判历史
假设我们有以下谈判历史数据:
-
谈判1:时间=2023-08-01,地点=公司会议室,参与人员=张三、李四、供应商A,结果=每件价格降低2元,交货时间缩短2天
-
谈判2:时间=2023-08-15,地点=供应商A办公室,参与人员=王五、赵六、供应商A,结果=每件价格降低3元,付款条件放宽5天
import pandas as pd
import sqlite3
# 连接到SQLite数据库
conn = sqlite3.connect('procurement_orders.db')
cursor = conn.cursor()
# 创建谈判历史表
cursor.execute('''
CREATE TABLE IF NOT EXISTS negotiation_history (
negotiation_id INTEGER PRIMARY KEY,
negotiation_date DATETIME,
location TEXT,
participants TEXT,
supplier TEXT,
result TEXT,
remarks TEXT
)
''')
# 插入初始谈判历史
initial_negotiations = [
(1, '2023-08-01 10:00:00', '公司会议室', '张三,李四,供应商A', 'A', '每件价格降低2元,交货时间缩短2天', '谈判成功'),
(2, '2023-08-15 14:00:00', '供应商A办公室', '王五,赵六,供应商A', 'A', '每件价格降低3元,付款条件放宽5天', '谈判成功')
]
cursor.executemany('INSERT INTO negotiation_history (negotiation_id, negotiation_date, location, participants, supplier, result, remarks) VALUES (?, ?, ?, ?, ?, ?, ?)', initial_negotiations)
conn.commit()
# 查询谈判历史
query = "SELECT * FROM negotiation_history"
negotiation_history = pd.read_sql_query(query, conn)
# 输出谈判历史
print(negotiation_history)
# 分析谈判效果
def analyze_negotiation_effect(negotiation_history):
price_savings = 0
lead_time_improvement = 0
payment_terms_improvement = 0
for index, row in negotiation_history.iterrows():
result = row['result']
if '每件价格降低' in result:
price_savings += int(result.split('元')[0].split('降低')[1])
if '交货时间缩短' in result:
lead_time_improvement += int(result.split('天')[0].split('缩短')[1])
if '付款条件放宽' in result:
payment_terms_improvement += int(result.split('天')[0].split('放宽')[1])
return price_savings, lead_time_improvement, payment_terms_improvement
# 分析谈判效果
price_savings, lead_time_improvement, payment_terms_improvement = analyze_negotiation_effect(negotiation_history)
print(f"总价格节省: {price_savings} 元")
print(f"总交货时间缩短: {lead_time_improvement} 天")
print(f"总付款条件放宽: {payment_terms_improvement} 天")
4. 采购绩效评估
4.1 采购绩效指标
采购绩效评估是衡量采购管理效果的重要手段。Logility采购管理模块提供了多种绩效指标,帮助企业评估采购流程的效率和效果。常见的绩效指标包括采购周期时间、供应商绩效、采购成本节约等。
采购周期时间
采购周期时间是指从采购需求提出到采购完成的总时间。通过缩短采购周期时间,企业可以提高采购效率,减少库存成本。
例子:使用Python计算采购周期时间
假设我们有以下采购订单数据:
-
订单1:需求日期=2023-08-01,交货日期=2023-09-01
-
订单2:需求日期=2023-08-05,交货日期=2023-09-05
-
订单3:需求日期=2023-08-10,交货日期=2023-09-10
import pandas as pd
from datetime import datetime
# 定义采购订单数据
procurement_orders = pd.DataFrame({
'order_id': [1, 2, 3],
'demand_date': ['2023-08-01', '2023-08-05', '2023-08-10'],
'delivery_date': ['2023-09-01', '2023-09-05', '2023-09-10']
})
# 将日期字符串转换为日期对象
procurement_orders['demand_date'] = pd.to_datetime(procurement_orders['demand_date'])
procurement_orders['delivery_date'] = pd.to_datetime(procurement_orders['delivery_date'])
# 计算采购周期时间
procurement_orders['procurement_cycle_time'] = (procurement_orders['delivery_date'] - procurement_orders['demand_date']).dt.days
# 输出采购订单及其周期时间
print(procurement_orders)
# 计算平均采购周期时间
average_cycle_time = procurement_orders['procurement_cycle_time'].mean()
print(f"平均采购周期时间: {average_cycle_time:.2f} 天")
4.2 供应商绩效评估
供应商绩效评估是确保供应链稳定性和可靠性的重要环节。Logility采购管理模块通过多种指标评估供应商的绩效,如交货准时率、质量合格率、响应时间等。
交货准时率
交货准时率是指供应商按时交货的订单数量占总订单数量的比例。通过提高交货准时率,企业可以减少因延迟交货带来的损失。
例子:使用Python计算供应商交货准时率
假设我们有以下订单状态数据:
-
订单1:交货日期=2023-09-01,实际交货日期=2023-09-01
-
订单2:交货日期=2023-09-05,实际交货日期=2023-09-06
-
订单3:交货日期=2023-09-10,实际交货日期=2023-09-10
import pandas as pd
from datetime import datetime
# 定义订单状态数据
order_status = pd.DataFrame({
'order_id': [1, 2, 3],
'delivery_date': ['2023-09-01', '2023-09-05', '2023-09-10'],
'actual_delivery_date': ['2023-09-01', '2023-09-06', '2023-09-10']
})
# 将日期字符串转换为日期对象
order_status['delivery_date'] = pd.to_datetime(order_status['delivery_date'])
order_status['actual_delivery_date'] = pd.to_datetime(order_status['actual_delivery_date'])
# 判断是否按时交货
order_status['on_time_delivery'] = (order_status['actual_delivery_date'] == order_status['delivery_date'])
# 计算交货准时率
on_time_delivery_count = order_status['on_time_delivery'].sum()
total_orders = len(order_status)
on_time_delivery_rate = on_time_delivery_count / total_orders
# 输出订单状态及其是否按时交货
print(order_status)
# 输出交货准时率
print(f"交货准时率: {on_time_delivery_rate:.2%}")
4.3 采购成本节约分析
采购成本节约分析是评估采购策略效果的重要手段。通过比较实际采购成本和预期采购成本,企业可以了解采购成本节约的情况,进一步优化采购策略。
采购成本节约分析方法
采购成本节约分析通常包括以下几个步骤:
-
计算预期采购成本:根据历史数据和市场信息,计算预期的采购成本。
-
记录实际采购成本:记录每次采购的实际成本。
-
计算成本节约:比较预期成本和实际成本,计算成本节约金额。
-
生成成本节约报告:生成详细的成本节约报告,供管理层审阅和决策。
例子:使用Python进行采购成本节约分析
假设我们有以下数据:
-
预期采购成本:1000000元
-
实际采购成本:900000元
# 定义预期采购成本和实际采购成本
expected_cost = 1000000 # 预期采购成本
actual_cost = 900000 # 实际采购成本
# 计算成本节约
cost_savings = expected_cost - actual_cost
# 计算成本节约率
cost_savings_rate = cost_savings / expected_cost
# 输出成本节约和成本节约率
print(f"成本节约: {cost_savings:.2f} 元")
print(f"成本节约率: {cost_savings_rate:.2%}")
# 生成成本节约报告
cost_savings_report = pd.DataFrame({
'metric': ['预期采购成本', '实际采购成本', '成本节约', '成本节约率'],
'value': [expected_cost, actual_cost, cost_savings, cost_savings_rate]
})
# 输出成本节约报告
print(cost_savings_report)
通过以上步骤,Logility采购管理模块可以帮助企业实现采购计划的自动化、优化库存、选择最优供应商、生成和管理采购订单、控制采购成本,并评估采购绩效。这些功能不仅提高了采购管理的效率,还为企业带来了显著的成本节约和供应链稳定性。