自然语言处理之命名实体识别:Transformer预训练模型与迁移学习
自然语言处理基础
自然语言处理概述
自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别和命名实体识别等场景。其核心挑战在于理解语言的复杂性和模糊性,以及处理大规模文本数据的能力。
示例:中文分词
中文分词是NLP中的基础任务,用于将连续的中文文本切分成具有语义的词语序列。在Python中,可以使用jieba库进行中文分词。
import jieba
text