自然语言处理之命名实体识别:Transformer预训练模型与迁移学习

自然语言处理之命名实体识别:Transformer预训练模型与迁移学习

在这里插入图片描述

自然语言处理基础

自然语言处理概述

自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别和命名实体识别等场景。其核心挑战在于理解语言的复杂性和模糊性,以及处理大规模文本数据的能力。

示例:中文分词

中文分词是NLP中的基础任务,用于将连续的中文文本切分成具有语义的词语序列。在Python中,可以使用jieba库进行中文分词。

import jieba

text 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值