👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路
文章大纲
从零构建大语言模型全栈开发指南 -第三部分:训练与优化技术-3.3.2 参数高效微调:LoRA与适配器(Adapter)技术
1. 参数高效微调(PEFT)的背景与意义
随着大语言模型(LLM)参数规模突破千亿级(如GPT-3 175B、Qwen2.5-32B)
,传统全参数微调面临两大挑战:
-
- 显存与计算成本高:全微调需更新所有参数,
以GPT-3为例,单次训练需1.2TB显存
,远超消费级GPU能力。
- 显存与计算成本高:全微调需更新所有参数,
-
- 多任务部署困难:每个任务需独立存储完整模型副本,导致存储冗余与切换成本剧增。
参数高效微调(PEFT)通过冻结大部分预训练参数、仅优化少量新增参数,实现成本与性能的平衡
。其核心目标为:
显存占用降低50%以上
训练速度