从零构建大语言模型全栈开发指南:第三部分:训练与优化技术-3.3.2参数高效微调:LoRA与适配器(Adapter)技术

👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路


从零构建大语言模型全栈开发指南 -第三部分:训练与优化技术-3.3.2 参数高效微调:LoRA与适配器(Adapter)技术

在这里插入图片描述


1. 参数高效微调(PEFT)的背景与意义

随着大语言模型(LLM)参数规模突破千亿级(如GPT-3 175B、Qwen2.5-32B),传统全参数微调面临两大挑战:

    1. 显存与计算成本高:全微调需更新所有参数,以GPT-3为例,单次训练需1.2TB显存,远超消费级GPU能力。
    1. 多任务部署困难:每个任务需独立存储完整模型副本,导致存储冗余与切换成本剧增。

参数高效微调(PEFT)通过冻结大部分预训练参数、仅优化少量新增参数,实现成本与性能的平衡。其核心目标为:

  • 显存占用降低50%以上
  • 训练速度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言析数智

创作不易,感谢客官的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值