Java面试题(八)链表常见算法题

本文详细介绍了链表数据结构中的经典算法实现,包括删除指定元素、寻找中间节点、判断链表是否存在环、链表反转、获取链表长度及链表元素的移动等核心操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

删除链表中元素

先准备链表对象

public class ListNode {

    private int val;

    private ListNode prev;
    private ListNode next;

    public ListNode(int x){
        val = x;
    }
}
    /**
     * @description 删除链表[4,5,1,9] 中 5 这个元素
     * @param listNode
     * @return void
     * @date 2022/12/14 14:39
     */
    public static void deleteNode(ListNode listNode){

        // 当前节点的值改为下个节点的值,例[4,5,1,9]中的5改为1,链表变为[4,1,1,9]
        listNode.val = listNode.next.val;
        // 删除下个节点,此时,node.next.next从[1,9]变为[9],链表最后为[4,1,9]
        listNode.next = listNode.next.next;
    }

找到链表中间的元素

利用快慢指针来查找,快指针移动步长=2,慢指针移动步长=1,当快指针移动到末尾,此时慢指针一定在中间元素位置

    /**
     * @description 找到链表中间的元素
     * @param listNode
     * @return ListNode
     * @date 2022/12/14 14:41
     */
    public static ListNode findMiddleNode(ListNode listNode){

        //利用快慢指针查找,步长=1的慢指针,和步长=2的快指针
        ListNode fast = listNode;
        ListNode slow = listNode;

        // 检测快指针是否可以安全移动
        while (fast.next != null && fast.next.next != null){

            slow = slow.next;
            fast = fast.next;
        }

        //步长=2的快指针移到完成后,此时步长=1的指针肯定停留在中间位置
        return slow;
    }

判断链表是否有环

利用快慢指针查找,快指针移动步长=2,慢指针移动步长=1,如果在遍历过程中,满指针和快指针有重合,那就肯定链表有环

    /**
     * @description 判断链表是否有环
     * @param listNode
     * @return boolean
     * @date 2022/12/14 15:01
     */

    public static boolean hasCircle(ListNode listNode){
        ListNode slow = listNode;
        ListNode fast = listNode;

        //利用快慢指针移动,当快指针和慢指针重合就说明有环
        while(fast != null && fast.next != null){
            slow = slow.next;
            fast = fast.next.next;
            if(slow == fast){
                return true;
            }
        }
        return false;
    }

链表反转

输入:1->2->3->4->5
输出:4->5->3->2->1

利用头插法,把下一个节点存起来插入到头结点,然后指向下下个节点,以此类推,直到末尾节点

    public static ListNode reversalList(ListNode head) {
        if(head == null){
            return null;
        }
        if(head.next == null){
            return head;
        }
        ListNode next = null;
        ListNode pre = null;
        while (head != null) {
            // 保存要反转插入到头的那个节点
            next = head.next;
            // 要反转的那个节点指向已经反转的上一个节点(备注:第一次反转的时候会指向null)
            head.next = pre;
            // 上一个已经反转到头部的节点
            pre = head;
            // 一直向链表尾走
            head = next;
        }
        return pre;
    }

返回链表值不为空的长度

输入: 1->3->5->null
输出: 3

输入: null
输出: 0

public class Solution {

    public int countNodes(ListNode head) {
        if(head == null){
            return 0;
        }
        int count = 0;
        while(head != null){
            count ++;
            head = head.next;
        }
        return count;
    }
}

从链表尾部向头移动K个位置

输入:1->2->3->4->5 k = 2
输出:4->5->1->2->3

输入:3->2->1 k = 1
输出:1->3->2

记给定链表的长度为 nn,注意到当向右移动的次数 k \geq nk≥n 时,我们仅需要向右移动 k \bmod nkmodn 次即可。因为每 nn 次移动都会让链表变为原状。这样我们可以知道,新链表的最后一个节点为原链表的第 (n - 1) - (k \bmod n)(n−1)−(kmodn) 个节点(从 00 开始计数)。

这样,我们可以先将给定的链表连接成环,然后将指定位置断开。

具体代码中,我们首先计算出链表的长度 nn,并找到该链表的末尾节点,将其与头节点相连。这样就得到了闭合为环的链表。然后我们找到新链表的最后一个节点(即原链表的第 (n - 1) - (k \bmod n)(n−1)−(kmodn) 个节点),将当前闭合为环的链表断开,即可得到我们所需要的结果。

特别地,当链表长度不大于 11,或者 kk 为 nn 的倍数时,新链表将与原链表相同,我们无需进行任何处理。

    public ListNode moveK(ListNode head, int k){
        if (k == 0 || head == null || head.next == null) {
            return head;
        }
        int n = 1;
        ListNode iter = head;
        while (iter.next != null) {
            iter = iter.next;
            n++;
        }
        int add = n - k % n;
        if (add == n) {
            return head;
        }
        iter.next = head;
        while (add -- > 0) {
            iter = iter.next;
        }
        ListNode ret = iter.next;
        iter.next = null;
        return ret;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

珍妮玛•黛金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值