自动驾驶汽车的传感器融合技术是实现自动驾驶的关键,通过整合多种传感器的数据,能更全面、精准地感知车辆周围环境。以下是对自动驾驶汽车中常用传感器工作原理及数据融合方法的详细介绍。
自动驾驶汽车常用传感器工作原理
- 摄像头
- 成像原理:目标物体通过镜头生成光学图像投射到图像传感器上,光信号转变为电信号,再经过 A/D(模数转换)后变为数字图像信号,最后送到 DSP(数字信号处理芯片)中进行加工处理,由 DSP 将信号处理成特定格式的图像4。
- 视觉感知:摄像头可实现广角度、长距离视觉感知,能精准识别障碍物的大小和类别,如各类车道线、红绿灯以及交通标志等,还能对车辆行驶的安全边界进行划分,对横向移动目标进行探测和追踪4。
- 雷达
- 毫米波雷达:利用毫米波频段的电磁波来检测目标物体。通过发射和接收毫米波信号,分析信号的频率变化(多普勒效应)来确定目标物体的速度,根据信号的往返时间来计算目标物体与车辆的距离。其优点是不受天气影响,能在恶劣天气下稳定工作,且对高速运动目标的检测精度高。缺点是对物体的形状和纹理信息识别能力较弱,无法提供详细的视觉图像。
- 超声波雷达:一般用于近距离检测。它发射超声波脉冲,当超声波遇到障碍物时会反射回来,通过测量发射和接收超声波的时间差来计算障碍物与车辆的距离。常用于车辆的泊车辅助系统,能准确检测车辆周围近距离的障碍物,但检测范围有限,通常在数米以内。
- 激光雷达1
- 工作原理