本地算力部署大模型详细流程(二)

1、前景回顾

上一篇我们通过ollama本地部署了一个DeepSeek,因为没有前端操作页面,我们只能使用cmd的方式和deepseek对话体验感并不是很好,下面我们通过Docker部署一个前端页面(Open WebUI)

Open WebUI地址:https://github.com/open-webui/open-webui

在这里插入图片描述

2、Open WebUI安装

通过如下命令安装:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main

在这里插入图片描述

2.1 测试

浏览器输入地址:http://ip:3000 回车
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 配置环境变量

因为我的ollama部署在本地,open-webui部署再云服务器,所以需要配置环境变量

配置远程访问

在我们本地部署好ollama之后,仅支持本机访问,我们可以通过修改环境变量让其他人可以远程访问。

在wins电脑上增加环境变量:

OLLAMA_ORIGINS="*" 
OLLAMA_HOST=0.0.0.0:11434

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.3 使用open-webui

在这里插入图片描述
在这里插入图片描述

3、数据投喂训练AI

实现数据投喂训练AI,需要下载nomic-embed-text和安装AnythingLLM

  1. nomic-embed-text:用于生成文本的嵌入向量,将文本转换为数值形式,便于AI模型处理和分析。
  2. AnythingLLM:一个工具或平台,用于管理和训练AI模型,支持数据投喂和模型优化,帮助提升AI性能。

两者结合,可实现数据预处理和模型训练,提升AI效果。

3.1 下载nomic-embed-text

在终端输入:ollama pull nomic-embed-text 回车下载nomic-embed-text嵌入式模型

在这里插入图片描述

3.2 下载AnythingLLM

官网地址:https://anythingllm.com/

在这里插入图片描述

在这里插入图片描述

双击安装包

在这里插入图片描述

修改安装路径

在这里插入图片描述

点击完成

在这里插入图片描述

软件打开后,点击开始

在这里插入图片描述

点击箭头,进行下一步

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

点击【设置】,里面可以设置模型、界面显示语言等

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.3 开始投喂

1、点击upload选择需要上传的文件(支持链接、PDF、Txt、Word、Excel、PPT等常见文档格式)
2、勾选上传的文件
3、点击【Move to Workspace】

投喂之前效果

在这里插入图片描述

投喂之后效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小钟佳运

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值