目录
前言
粒子滤波(Particle Filter, PF),又称为序贯蒙特卡罗方法,是一种用于非线性、非高斯动态系统的状态估计方法。粒子滤波通过对状态空间进行离散化,并使用随机采样的方式来估计系统的状态。与扩展卡尔曼滤波(EKF)不同,粒子滤波不需要对系统模型进行线性化,这使得它在处理高度非线性问题时表现出色。
粒子滤波基于贝叶斯滤波框架,采用随机采样的方法来估计状态概率分布。它通过一组称为“粒子”的样本来表示系统的状态,并用这些粒子来估计系统的状态分布。
算法原理
粒子滤波(PF)也叫序贯蒙特卡洛滤波,是一种使用序贯重要性采样方法的非线性滤波方法。
将移动机器人的运动学模型和观测模型与粒子滤波结合,得到基于粒子滤波的蒙特卡洛定位,这是一种经典的移动机器人定位方法,可以有效地进行全局定位。它通过在全局地图中根据运动模型计算的分布撒播粒子(采样)作为机器人位姿的一种猜测,然后将传感器观测到的环境根据不同的感知模型与每个粒子周围的地图环境比较,相似程度越高,粒子接近机器人真实位姿的置信度(权重)就越高,计算粒子权重这一过程会造成样本退化,即粒子群的权重方差较大。解决方法是根据权重筛选这些粒子,这样就