目录 知识储备 基于深度学习的多目标检测与分类算法 技术原理及概念 多目标检测 多目标分类 实现步骤与流程 准备工作 核心模块实现 基于 OpenCV DNN 的多目标检测与分类代码实现 代码解析 优化方向 前言 理论及技术基础 2.1 卷积神经网络CNN 2.2 经典CNN模型 2.3 二阶段目标检测算法-以Faster R-CNN为例 2.4 一阶段目标检测算法-以YOLOV4为例 2.5 防止过拟合技术 2.6 数据归一化技术 2.7 目标检测模型评价指标 数据集制作与目标检测算法的选取 3.1 数据集制作 3.2 数据增强 3.3 TrashSet数据集与其他生活垃圾数据集的对比 3.4 目标检测算法的选取 基于YOLOV4的神经网络结构设计与改进 4.1 引言 4.2 目标检测器主干神经网络设计与改进 4.3 损失函数设计与修改 消融实验设计与结果分析 5.1 实验环境 5.2 消融实验 5.3 基于TrashSet数据集的算法改进与可视化 5.4 实验总结 知识储备 基于深度学习的多目标检测与分类算法 技术原理及概念