目标检测YOLO实战应用案例100讲-基于YOLOv5_tiny算法的路面裂缝智能检测(续)

本文介绍了基于YOLOv5_tiny的路面裂缝智能检测方法,通过结合CLAHE算法和均值偏移滤波增强图像特征,建立路面裂缝数据集,对YOLOv5网络结构、激活函数、损失函数等进行优化,实现检测精度和速度的提升。实验结果显示,改进后的模型在检测速度和精度上优于其他常见算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

3.2.2 CLAHE算法

3.2.3本文滤波方法

3.3路面裂缝数据集建立

3.3.1数据集获取

3.4 YOLOv5算法原理

3.4.1 YOLOv5网络结构

3.4.2改进的多尺度预测网络——PA-DenseNet

3.4.3 Mish激活函数

3.4.4损失函数的改进

3.4.5基于ShuffleNetv2的主干网络改进

4模型实现与实验分析

4.1图像处理方法比较

4.2数据标注及数据扩充

4.2.1数据标注

4.2.2数据扩充

4.3实验结果与分析

4.3.1实验环境与实验数据

4.3.3 K折交叉验证

4.3.4模型训练

4.3.5实验结果与分析

4.3.6消融实验结果分析

5基于PySide2的用户系统界面设计

5.1 Py Side2简介

5.2用户系统交互界面设计


本文篇幅较长,分为上下两篇,上篇详见 基于YOLOv5_tiny算法的路面裂缝智能检测

3.2.2 CLAHE算法


经过均值偏移滤波处理后的图像清晰度明显提升,但裂缝的边缘信息还不理想。传统的 直方图算法没有考虑到图像的局部细节信息,路面裂缝受到外界因素的干扰使得图像过亮或
过暗。CLAHE算法通过对规定像素值周围的对比度进行调整,实现特征增强。
CLAHE算法是基于传统直方图均衡化算法,通过限制局部灰度值被过多融合或延展使 图像噪点放大和对比度增强,从而使图像更加清晰,计算公式如3.2所示。计算步骤如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值