目录 4目标检测算法的研究与改进 4.1 基于SSD神经网络部分的改进 4.1.1 SSD域适应训练 4.1.2 目标检测网络运算的优化改进 4.2 基于结合ECO跟踪预测的目标检测算法改进 4.2.1 插值预测ECO尺度因子策略 4.2.2 样本空间权重调整策略 4.2.3 目标检测框的修正策略 4.3 改进后目标检测网络算法效果评估 5带深度信息目标检测算法的嵌入式实现 5.1 系统算法框架 5.2 基于TI嵌入式平台AM5749硬件平台的实现 5.2.1 TIAM574x硬件平台结构概述 5.2.2 OpenCL定点优化及实现流程 5.3 基于AM5749嵌入式开发板的系统改进 5.3.1 摄像头与主板分离式设计 5.3.2 基于双神经网络算法的资源分配设计 5.4 基于AM5749平台系统实现结果与性能分析 知识拓展 基于YOLOv5结合ECO跟踪算法的驾校场景目标检测 环境配置与运行步骤: 关键功能说明: 效果增强建议: 本文篇幅较长,分为上中下三篇,文章索引详见 面向驾校场景带深度信息目标检测 面向驾校场景带深度信息目标检测(中)