UVALive-7278 - Game of Cards【博弈】【sg定理】

本文介绍了一款基于纸牌的游戏算法实现,通过使用Sprague-Grundy(SG)函数来确定游戏的胜者。玩家从多堆纸牌中取牌,每堆牌的顶部可取走一定数量的纸牌,并根据顶部牌的数值移除额外牌数。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


UVALive-7278 - Game of Cards


这里写图片描述
这里写图片描述

题目大意:A、B两个人玩游戏。A先手,问最后谁赢。

游戏规则:

  1. 给出n堆纸牌,可任意选择其中一堆,记为x
  2. 在x的顶部可取走[0,k]张纸牌,该堆纸牌至少留下一张
  3. x剩下来的纸牌中,记顶部的纸牌值为y,则移除最顶部的y张纸牌(即该堆至少还剩下y张纸牌才是合法)

如果有人不能进行合法移动,则输了。

题目思路:主要是写SG函数,每一堆的sg函数都不同。最后每一堆 ans ^= sg[n],即可。

SG函数详见代码。

以下是代码:

#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <functional>
#include <numeric>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <vector>
#include <queue>
#include <deque>
#include <list>
using namespace std;
int k;
int num[10005];
int sg[10005];
void sg_solve(int N)
{
    int i,j;
    bool hash[N];
    memset(sg,0,sizeof(sg));
    for (i = 1; i <= N; i++)  //第i这个状态
    {
        memset(hash,0,sizeof(hash));
        for (j = 0; j <= k; j++)  //遍历所有可走的状态,每次可以取走[0,k]张
        {
            if (i - j <= 0) continue;
            int bu = j + num[i - j];  //取走j张牌,还要加上对应的最后一张牌的值(因为还要移除这么多张牌)
            if (i - bu >= 0)
            {
                hash[sg[i - bu]] = 1;
            }
        }
        for (j = 0; j < N; j++)
        {
            if (!hash[j]){ sg[i] = j; break; }
        }
    }
}
int main()
{
    int p;
    while(cin >> p >> k)
    {
        int ans = 0;
        while(p--)
        {
            int t;
            cin >> t;
            memset(num,0,sizeof(num));
            for (int i = 1; i <= t; i++)
            {
                cin >> num[i];
            }
            sg_solve(t + 10);
            ans ^= sg[t];
        }
        if (ans) cout << "Alice can win.\n";
        else cout << "Bob will win.\n";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值