权责发生制与收付实现制的区别

本文详细解释了权责发生制和收付实现制的定义、原则及其在会计处理中的应用。权责发生制强调根据业务发生确认收入和费用,而收付实现制则以实际款项为准。文章还通过实例说明了两者在租金支出上的处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

权责发生制与收付实现制是两种不同的会计基础。我国企业采用权责发生制,但我国的行政单位仍然普遍采用收付实现制。初学会计,经常容易混淆权责发生制与收付实现制,今天就来帮大家理清下。

一、权责发生制(对事不对钱)

1、权责发生制亦称为应收应付制,是指在会计核算中,按照收入已经实现,费用已经发生,并应由本期负担为标准来确认本期收入和本期费用。

2、根据权责发生制原则处理会计业务时应做到以下两点。

其一,凡是当期已经实现的收入和已经发生或者应当负担的费用,无论款项是否收付,都应当作为当期的收入和费用,计入利润表;

其二,凡不应属于当期的收入和费用,即使款项已经在当期收付,也不应作为本期的收入和费用予以处理。

因此,采用权责发生制,在会计期末必须对账簿记录进行账项调整,才能够使本期的收入和费用存在合理的配比关系,从而可以比较正确地计算企业的本期盈亏。

3、优点及适用范围。

权责发生制能够真实地反映当期的经营收入和经营支出,更加准确地计算和确定企业的经营成果。因此,它在企业会计中被普遍采用。

二、收付实现制(对钱不对事)

1、收付实现制是一种与权责发生制相对应的关于收入和费用这两个会计要素的计量基础。收付实现制亦称实收实付制,是指在会计核算中,以实际收到或支付款项为确认本期收入和本期费用的标准。

2、根据收付实现制原则处理会计业务时应做到以下两点。

其一,凡本期内实际收到的收入和支付的费用,无论其是否应归属本期,均应作为本期的收入和费用处理;

其二,凡本期未曾收到的收入和未曾支付的费用,即使应归属本期,亦不应作为本期的收入和费用予以处理。

因此,采用收付实现制,会计处理手续比较简便,会计核算可以不考虑应计收入、应计费用、预收收入、预付费用的存在。

3、缺点及适用范围。收付实现制不能正确地计算和确定企业的当期损益,缺乏合理的收支配比关系。因此,它只适用于业务比较简单和应计收入、应计费用、预收收入、预付费用很少发生的企业以及机关、事业、团体等单位。

三、两者的区别

二者之间的主要区别是确认收入和费用的标准不同;对收入与费用的配比要求不同;会计期末处理方法不同;各会计期间计算的收益结果不同;核算过程中设置的账户设置不同;各自的优点缺点和范围不同等。

简单来说,权责发生制说的就是在当前计算周期发生的收支;而收付实现制则是说实际流水账单中的流水。比如你在8月份的时候支付了1800元的房费,是3个月的费用,如果是权责发生制8月份的费用就计入600元,如果是收付实现制就计入费用1800。

[单选题]甲公司于2018年8月临时租入一套设备用于生产产品,9月份支付8、9、10三个月租金共计90 000元。按照权责发生制的要求对该项租金支出正确处理的是( )

A、全额计入8月份的制造成本

B、全额计入9月份的制造成本

C、全额计入10月份的制造成本

D、按一定的方法分摊计入8、9、10月份的制造成本

正确答案:D

文字解析:

权责发生制是按"实际发生"这个业务来进行确认的,按照权责发生制原则,应按一定的方法分摊计入8、9、10月份的制造成本。

因为这个9万元租金不全是8月,不全是9月,不全是10月份的,我们得把9万元租金分摊到这三个月。

【提示】权责发生制:“对事不对钱”;收付实现制:“对钱不对事”。

原文地址:百度安全验证

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战解决方案、模型架构及代码示例,到具体的应用领域、部署应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTMTransformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值