word2vec 入门(二)

46 篇文章 ¥19.90 ¥99.00
本文介绍了word2vec的入门步骤,包括下载、编译和运行示例脚本,重点讨论了训练参数如学习速率、最小词频、聚类数量等。还对比了skip-gram和CBOW模型以及负采样的作用。最后提到了中文语料库的选择和预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

word2vec

要解决问题: 在神经网络中学习将word映射成连续(高维)向量,这样通过训练,就可以把对文本内容的处理简化为K维向量空间中向量运算,而向量空间上的相似度可以用来表示文本语义上的相似度。

一般来说, word2vec输出的词向量可以被用来做很多 NLP 相关的工作,比如聚类、找同义词、词性分析等等。另外还有其向量的加法组合算法。官网上的例子是 :

vector('Paris') - vector('France') +
vector('Italy') ≈vector('Rome'), vector('king') - vector('man') + vector('woman') ≈
vector('queen')

但其实word2vec也只是少量的例子完美符合这种加减法操作,并不是所有的 case 都满足。

快速入门

1、从http://word2vec.googlecode.com/svn/trunk/ 下载所有相关代码:
一种方式是使用svn Checkout,可加代理进行check。
另一种就是export to github,然后再github上下载,我选择第二种方式下载。

2、运行make编译word2vec工具:(如果其中makefile文件后有.txt后缀,将其去掉)在当前目录下执行make进行编译,生成可执行文件(编译过程中报出很出Warning,暂且不管);

3、运行示例脚本:./demo-word.sh 看一下./demo-word.sh的内容,大致执行了3步操作

  • 从http://matt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

life1024

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值