深度学习论文: FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows及其PyTorch实现
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
PDF: https://arxiv.org/pdf/2111.07677v2.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
大多数现有的基于表示的方法使用深度卷积神经网络提取正常图像特征,并通过非参数分布估计方法对相应的分布进行表征。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前的方法不能有效地将图像特征映射到可处理的基础分布,并忽略了识别异常所必需的局部和全局特征之间的关系。为此,提出了使用2D正则化流实现的FastFlow,并将其用作概率分布估计器。提出的FastFlow解决了原始的一维归一化