深度学习论文: FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows

深度学习论文: FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows及其PyTorch实现
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
PDF: https://arxiv.org/pdf/2111.07677v2.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

大多数现有的基于表示的方法使用深度卷积神经网络提取正常图像特征,并通过非参数分布估计方法对相应的分布进行表征。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前的方法不能有效地将图像特征映射到可处理的基础分布,并忽略了识别异常所必需的局部和全局特征之间的关系。为此,提出了使用2D正则化流实现的FastFlow,并将其用作概率分布估计器。提出的FastFlow解决了原始的一维归一化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值