自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

不积跬步,无以至千里;不积小流,无以成江海。

而世之奇伟、瑰怪、非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也。尽吾志也而不能至者,可以无悔矣,其孰能讥之乎?

  • 博客(603)
  • 资源 (6)
  • 收藏
  • 关注

原创 ChatGPT 优缺点对比

它可能会给出看似真实但实际上是错误或伪造的答案,因此在应用中需要谨慎使用,尤其是涉及到重要或敏感的信息。:ChatGPT是通过对大量的互联网文本进行训练而得到的,它从多个领域的数据中学习知识和语言模式。:OpenAI不断致力于改进ChatGPT的性能和功能,以提供更准确、有用和安全的回答。:ChatGPT具有灵活的架构,可以根据用户的输入进行迭代和调整。它可以通过上下文理解和记忆先前的对话,以便更好地回应用户的需求。它可以根据不同的用例提供准确的回答和解决方案。

2023-07-10 14:54:41 12373 13

原创 Alpine Linux 设置镜像的时区

【代码】Alpine Linux 设置镜像的时区。

2025-08-01 17:21:00 156

原创 一文读懂微信开发生成带参数的二维码

一文读懂微信开发生成带参数的二维码

2025-07-19 10:10:32 502

原创 执行shell 脚本 如何将日志全部输出到文件

在执行 Shell 脚本时,如果需要将。如果希望日志进入系统日志(如。选择最适合你的方式即可!

2025-07-16 09:41:44 309

原创 [Xtrabackup] Found tables with row versions due to INSTANT ADD/DROP columns

[Xtrabackup] Found tables with row versions due to INSTANT ADD/DROP columns

2025-07-16 09:17:00 318

原创 xtrabackup 有一个全量备份和多个增量备份时,数据恢复的流程及命令

使用 xtrabackup 恢复全量+增量备份的流程: 准备全量备份:先用 --prepare --apply-log-only 处理全量备份; 合并增量备份:按顺序用 --incremental-dir 将增量备份合并到全量备份(最后一次合并不加 --apply-log-only); 恢复数据:停止 MySQL 后,用 --copy-back 将数据还原到数据库目录; 启动服务:修改目录权限为 mysql:mysql 并启动 MySQL。 关键命令示例: xtrabackup --prepare --ta

2025-07-11 10:43:24 418

原创 基于注意力机制的方法预测的体重

我们有一些已知的身高(作为键 KKK)和对应的体重(作为值 VVV)。现在,我们想使用一种基于注意力机制的方法来“查询”一个特定身高(比如 170cm)对应的体重。虽然这通常不是注意力机制的典型应用,但我们可以构造一个类似的计算过程。定义键和值:定义查询向量:计算相似度:应用 softmax 函数:计算加权求和:假设我们有以下数据:​160165175180​​V=[50556570]V = \begin{bmatrix} 50 \\ 55 \\ 65 \\ 70 \end{bmatrix}V=​5055

2025-07-01 21:24:12 880

原创 注意力得分矩阵求解例子

QKVdk​AQKVQKTdk​​QKT​softmaxdk​​QKT​V下面通过一个具体的例子来验证这个公式。

2025-07-01 20:54:44 794

原创 Transformer结构--输入编码(BPE,PE)

在Transformer结构中,输入编码是模型处理文本数据的关键步骤,其中**BPE(Byte Pair Encoding,字节对编码)PE(Positional Encoding,位置编码)**是两种重要的编码方式,它们分别解决了分词和位置信息的问题。

2025-06-28 21:05:28 1037

原创 python 项目利用uv管理python包依赖

Transformer结构–输入编码(BPE,PE)

2025-06-28 20:11:43 205

原创 神经网络中的随机梯度下降(Stochastic Gradient Descent, SGD)详解

在神经网络的训练过程中,优化算法扮演着至关重要的角色。它们通过调整模型的参数(如权重和偏置),最小化损失函数,从而提升模型的性能。随机梯度下降(Stochastic Gradient Descent, SGD)是其中最基础且广泛使用的优化算法之一。

2025-06-22 00:15:00 1110

原创 神经网络中的交叉熵(Cross-Entropy)损失函数详解

在神经网络和机器学习领域,损失函数是衡量模型预测值与真实值之间差异的核心工具。交叉熵(Cross-Entropy)损失函数,作为一种广泛使用的分类损失函数,尤其在处理多分类问题时表现出色。它不仅具有坚实的理论基础,还在实际应用中展现出卓越的性能。

2025-06-21 15:45:00 980

原创 神经网络中的梯度的计算详解

梯度是神经网络训练的核心,它指导参数更新方向以最小化损失函数。梯度计算涉及链式法则、反向传播等关键技术,本文将围绕核心概念、计算步骤、实现方法及优化策略展开详细说明。

2025-06-21 14:29:44 353

原创 神经网络中的均方误差(Mean Squared Error)详解

在机器学习和神经网络领域,损失函数(Loss Function)是衡量模型预测值与真实值之间差异的关键指标。均方误差(Mean Squared Error, MSE)作为一种经典的损失函数,因其简单性、可解释性和数学上的优良性质,在回归问题中得到了广泛应用。本文将深入探讨MSE的定义、原理、应用场景、优缺点以及在神经网络中的实现细节。

2025-06-21 11:04:40 996

原创 神经网络基础组件精讲

神经网络是深度学习的核心架构,由多个基础组件构成:人工神经元作为基本计算单元,通过权重、偏置和激活函数进行非线性转换;单层神经网络实现简单映射,而多层神经网络通过隐藏层提取高阶特征;常见的激活函数包括Sigmoid、Tanh和ReLU,用于引入非线性能力;权重和偏置通过反向传播优化;输出层根据任务类型选用不同激活函数。这些组件协同工作,使神经网络能够学习复杂模式,解决分类、回归等多样化问题。理解这些基础结构对掌握深度学习原理至关重要。

2025-06-18 20:40:15 1040

原创 共现计数(Co-Occurrence Counts):自然语言中的语义关联量化基石

共现计数(Co-Occurrence Counts):自然语言中的语义关联量化基石

2025-06-17 09:01:59 369

原创 分布式词表示(Distributed Word Representation):自然语言处理的核心基石

分布式词表示(Distributed Word Representation):自然语言处理的核心基石

2025-06-17 08:59:12 445

原创 利用coze工作流制作一个自动生成PPT的智能体

在Coze平台中,通过工作流实现PPT自动化生成是一个高效且灵活的解决方案,尤其适合需要快速产出标准化演示文稿的场景。

2025-06-08 20:02:59 1503

原创 国内可用docker镜像源不定期更新,建议收藏

下载个docker镜像不让下,真是服了。

2025-06-07 17:47:40 173

原创 Gradle:Gradle的下载、安装和配置环境及idea配置指南

Gradle 是一个基于 Apache Ant 和 Apache Maven 理念的现代构建自动化工具,它使用 Groovy 或 Kotlin 编写的领域特定语言(DSL)来定义项目构建逻辑。Gradle 结合了 Ant 的灵活性和 Maven 的依赖管理,同时提供了更强大的功能和更简洁的语法。

2025-06-05 15:52:16 740

原创 元素 “cas:serviceResponse“ 的前缀 “cas“ 未绑定

错误信息“元素 'cas:serviceResponse' 的前缀 'cas' 未绑定”表明 XML 文档包含带有命名空间前缀 cas 的元素,但未定义或正确绑定该前缀。以下是解决此问题的步骤:

2025-06-05 08:46:32 524

原创 BM25检索与向量检索

本文对比分析了BM25检索和向量检索的技术原理、适用场景及优缺点。BM25基于词频统计,适用于关键词匹配和短文本检索,计算高效但无法处理语义;向量检索通过深度学习映射语义空间,适用于长文本和跨语言检索,但计算复杂。实际应用中可结合两者优势,采用混合检索方法提升性能。BM25多用于传统搜索引擎,向量检索则适用于智能问答等语义理解场景。

2025-05-29 08:51:03 920

原创 nginx二级目录代理minio公有桶和私有桶配置最佳指南

针对Nginx二级目录代理MinIO公有桶和私有桶的最佳实践配置指南,结合生产环境中的常见需求和安全要求

2025-05-24 21:45:00 441

原创 go 集成base64Captcha 支持多种验证码

base64Captcha是一个基于 Go 语言开发的验证码生成库,主要用于在 Web 应用中集成验证码功能,以增强系统的安全性.验证码类型丰富:支持生成多种类型的验证码,包括纯数字、纯字母、数字与字母组合、数学公式、汉字、音频等,满足不同场景的需求。

2025-05-16 16:11:37 591

原创 Go 语言中一个功能强大且广泛使用的数据验证库github.com/go-playground/validator/v10

`github.com/go-playground/validator/v10` 是 Go 语言中一个功能强大且广泛使用的数据验证库,主要用于对结构体字段进行数据校验,确保数据的合法性和完整性。

2025-05-01 21:27:49 651

原创 Gin 集成 prometheus 客户端实现注册和暴露指标

使用 Prometheus 提供的指标类型(如 Counter、Gauge、Histogram 等)定义需要监控的指标。

2025-04-30 20:45:00 633

原创 Gin 框架中集成 runtime/debug 打印日志堆栈信息

在 Gin 框架中,你可以使用 runtime/debug 包来打印调试信息,特别是在错误处理和日志记录方面。是 Go 标准库中一个用于调试和诊断的包,提供了多种功能来帮助开发者分析程序运行状态、排查问题以及优化性能。os.Stderr[]byterecoverpanicAllocTotalAllocSysNumGCMain.PathDeps通过合理使用,可以显著提升 Go 程序的调试效率和运行稳定性。

2025-04-27 10:38:45 760

原创 还在到处找MCP资源?这11个MCP资源库收好!

2024年年底,Anthropic提出并开源的MCP(Model Context Protocol),如今已成为AI编程及AI Agent领域的热门概念。不少小伙伴在后台询问MCP资源,今天就为大家整理了11个实用的MCP资源库,涵盖服务器托管、客户端工具、社区交流等多个方面,一起来看看吧!

2025-04-23 17:14:18 871

原创 基于百度地图 MCP Server规划规划一次青岛到北京旅行的详细行程实践

百度地图API现已全面兼容,是国内首家兼容MCP协议的地图服务商。百度地图提供的MCP Server,包含10个符合MCP协议标准的API接口,涵盖逆地理编码、地点检索、路线规划等。依赖和开发,任意支持MCP协议的智能体助手(如ClaudeCursor以及等)都可以快速接入。

2025-04-23 16:48:20 878

原创 Go语言之sync包 WaitGroup的使用和底层实现

在 Go 语言里,sync 包中的 WaitGroup 是一个实用工具,用于等待一组 goroutine 完成任务。其核心原理是通过内部维护一个计数器,该计数器初始值为 0,每启动一个新的 goroutine 就将计数器加 1,每个 goroutine 完成任务后会将计数器减 1,当计数器变为 0 时,意味着所有 goroutine 都已完成任务。下面为你展示WaitGroup。

2025-04-22 22:30:00 478

原创 etcd 的安装使用

etcd是一个开源的分布式键值存储系统,主要用于共享配置和服务发现,在分布式系统中扮演着重要的角色。

2025-04-14 15:09:33 486

原创 Server-Sent Events一种允许服务器向客户端发送实时更新的 Web API

Server-Sent Events(SSE)是一种允许服务器向客户端发送实时更新的 Web API。它基于 HTTP 协议,提供了一种单向的、服务器到客户端的通信机制,客户端可以通过监听服务器发送的事件来接收实时数据。下面从原理、使用场景、代码示例等方面进行详细介绍。

2025-04-10 21:45:00 1766

原创 AI 大模型的标准化工具箱MCP (Model Context Protocol)

MCP (Model Context Protocol,模型上下文协议)定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。MCP 的目标是创建一个通用标准,使 AI 应用程序的开发和集成变得更加简单和统一。

2025-04-10 14:10:48 1147

原创 LangChain使用大语言模型构建强大的应用程序

LangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,并集成额外的资源,例如 API 和数据库。

2025-04-09 20:58:32 788

原创 golang 中 make 和 new 的区别?

Go语言中,`make` 和 `new` 都是用于内存分配的关键字,但它们在使用场景、返回值和初始化方式等方面存在一些区别

2025-04-08 14:55:43 421

原创 golang 性能优化分析工具 pprof

pprof是 Go 语言开发中不可或缺的性能分析工具,它能帮助开发者深入了解程序的性能瓶颈,从而有针对性地进行优化,提高程序的性能和稳定性。

2025-04-08 11:36:42 1282

原创 ComfyUI的本地私有化部署使用Stable Diffusion文生图

ComfyUI是一个基于节点流程的Stable Diffusion操作界面。

2025-04-06 16:27:32 1092

原创 chromadb 安装和使用

Chromadb 是一个开源的嵌入式向量数据库,专为现代人工智能和机器学习应用设计,旨在高效存储、检索和管理向量数据。

2025-04-06 12:44:26 951

原创 如何选择RAG的Embedding模型?

中文模型:bge-large-zh-v1.5, multilingual-e5-large, bce-embedding-base_v1,m3e-base,acge_text_embedding。最近在学习RAG技术,遇到了一个关于如何选择合适的Embedding模型的问题。如果你去搜索Embedding模型,你会发现现在有很多的Embedding模型,那么该如何来选择这种模型呢?大系列有:bge, jina, gte, bce, e5, m3e。既包含开源,也包含API,鱼目混杂,需要进一步验证和确认。

2025-04-06 11:06:28 803

原创 ollama 部署nomic-embed-text 模型和使用,计算句子相似度

nomic -embed-text是一个基于Sentence Transformers库的句子嵌入模型,主要用于特征提取和句子相似度计算。nomic-embed-text 是一款强大的文本嵌入工具,其高性能和灵活性使其成为处理复杂文本任务的理想选择,在学术研究和商业应用等领域都能为用户提供有力的技术支持。

2025-04-06 10:34:00 1096

ycsb-mongodb

YCSB(Yahoo Cloud Serving Benchmark)是一个开源的性能测试框架,用于评估分布式系统的读写性能。它具有以下优点和缺点: 优点: 简单易用:YCSB提供了简单的API和配置文件,使得性能测试非常容易上手和执行。 可扩展性:YCSB支持多种数据库和存储系统,包括关系型数据库、NoSQL数据库、分布式文件系统等,使得测试可以针对不同的系统进行比较和评估。 客户端压力:YCSB可以模拟大量并发用户并提供各种负载测试模式,可以测试系统在高负载情况下的性能表现。 可自定义:YCSB允许用户通过自定义操作和负载生成器来模拟真实场景的读写操作,并能够根据需求进行灵活的性能测试。 缺点: 功能有限:YCSB主要关注系统的读写性能,但对于其他方面的测试,如连接池管理、事务处理等功能则不够全面。 没有细粒度监控:YCSB提供一些基本的指标和报告,但对于系统内部的细粒度监控和分析能力较弱,无法对系统的具体瓶颈进行深入探究。 侧重点不同:YCSB主要关注于基准性能,对于系统的可用性、容错性等方面的测试则相对较少。 综上所述,YCSB作为一个简单易用的性能测试框架,能够有效评估

2024-01-18

DmJdbcDriver

DM8达梦8数据库安装包驱动包,国产数据库达梦8 dm8 jdbc 驱动可以在达梦8数据库安装包里面的driver文件夹中获取 达梦8JDBC驱动分为DmJdbcDriver15、DmJdbcDriver16、DmJdbcDriver17、DmJdbcDriver18,分别对应Jdk1.5、Jdk1.6、Jdk1.7、Jdk1.8; 达梦数据库管理系统是达梦公司推出的具有完全自主知识产权的高性能数据库管理系统,简称DM,它具有如下特点: 1、通用性 达梦数据库管理系统兼容多种硬件体系,可运行于X86、X64、SPARC、POWER等硬件体系之上。DM各种平台上的数据存储结构和消息通信结构完全一致,使得DM各种组件在不同的硬件平台上具有一致的使用特性。 达梦数据库管理系统产品实现了平台无关性,支持Windows系列、各版本Linux(2.4及2.4以上内核)、Unix、Kylin、AIX、Solaris等各种主流操作系统。达梦数据库的服务器、接口程序和管理工具均可在32位/64 位版本操作系统上使用。 2、高性能 支持列存储、数据压缩、物化视图等面向联机事务分析场景的优化选项

2023-02-27

使用 febootstrap 制作自定义基础镜像

使用 febootstrap 制作自定义基础镜像

2022-05-13

mha4mysql-centos7

MHA Manager 0.56 rpm RHEL6 MHA Node 0.56 rpm RHEL6

2022-04-21

WebService调用代码样例

WebService调用代码样例

2017-08-11

mybatis-generator.zip

mybatis-generator自动生成代码工具 1.能够生成PO类,能生成mapper映射文件(其中包括基本的增删改查功能)、能生成mapper接口。 2.这可是省了很多功夫,即使你要做些修改,添加下自己需要的功能或删除自己不需要的功能。

2020-02-29

noVNC-1.0.0.tar.gz

noVNC 是一个 HTML5 VNC 客户端,采用 HTML 5 WebSockets, Canvas 和 JavaScript 实现,noVNC 被普遍用在各大云计算、虚拟机控制面板中,比如 OpenStack Dashboard 和 OpenNebula Sunstone 都用的是 noVNC。

2019-09-27

gson-2.2.4.jar

gson-2.2.4.jar

2015-12-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除