- 博客(603)
- 资源 (6)
- 收藏
- 关注

原创 ChatGPT 优缺点对比
它可能会给出看似真实但实际上是错误或伪造的答案,因此在应用中需要谨慎使用,尤其是涉及到重要或敏感的信息。:ChatGPT是通过对大量的互联网文本进行训练而得到的,它从多个领域的数据中学习知识和语言模式。:OpenAI不断致力于改进ChatGPT的性能和功能,以提供更准确、有用和安全的回答。:ChatGPT具有灵活的架构,可以根据用户的输入进行迭代和调整。它可以通过上下文理解和记忆先前的对话,以便更好地回应用户的需求。它可以根据不同的用例提供准确的回答和解决方案。
2023-07-10 14:54:41
12373
13
原创 [Xtrabackup] Found tables with row versions due to INSTANT ADD/DROP columns
[Xtrabackup] Found tables with row versions due to INSTANT ADD/DROP columns
2025-07-16 09:17:00
318
原创 xtrabackup 有一个全量备份和多个增量备份时,数据恢复的流程及命令
使用 xtrabackup 恢复全量+增量备份的流程: 准备全量备份:先用 --prepare --apply-log-only 处理全量备份; 合并增量备份:按顺序用 --incremental-dir 将增量备份合并到全量备份(最后一次合并不加 --apply-log-only); 恢复数据:停止 MySQL 后,用 --copy-back 将数据还原到数据库目录; 启动服务:修改目录权限为 mysql:mysql 并启动 MySQL。 关键命令示例: xtrabackup --prepare --ta
2025-07-11 10:43:24
418
原创 基于注意力机制的方法预测的体重
我们有一些已知的身高(作为键 KKK)和对应的体重(作为值 VVV)。现在,我们想使用一种基于注意力机制的方法来“查询”一个特定身高(比如 170cm)对应的体重。虽然这通常不是注意力机制的典型应用,但我们可以构造一个类似的计算过程。定义键和值:定义查询向量:计算相似度:应用 softmax 函数:计算加权求和:假设我们有以下数据:160165175180V=[50556570]V = \begin{bmatrix} 50 \\ 55 \\ 65 \\ 70 \end{bmatrix}V=5055
2025-07-01 21:24:12
880
原创 Transformer结构--输入编码(BPE,PE)
在Transformer结构中,输入编码是模型处理文本数据的关键步骤,其中**BPE(Byte Pair Encoding,字节对编码)PE(Positional Encoding,位置编码)**是两种重要的编码方式,它们分别解决了分词和位置信息的问题。
2025-06-28 21:05:28
1037
原创 神经网络中的随机梯度下降(Stochastic Gradient Descent, SGD)详解
在神经网络的训练过程中,优化算法扮演着至关重要的角色。它们通过调整模型的参数(如权重和偏置),最小化损失函数,从而提升模型的性能。随机梯度下降(Stochastic Gradient Descent, SGD)是其中最基础且广泛使用的优化算法之一。
2025-06-22 00:15:00
1110
原创 神经网络中的交叉熵(Cross-Entropy)损失函数详解
在神经网络和机器学习领域,损失函数是衡量模型预测值与真实值之间差异的核心工具。交叉熵(Cross-Entropy)损失函数,作为一种广泛使用的分类损失函数,尤其在处理多分类问题时表现出色。它不仅具有坚实的理论基础,还在实际应用中展现出卓越的性能。
2025-06-21 15:45:00
980
原创 神经网络中的梯度的计算详解
梯度是神经网络训练的核心,它指导参数更新方向以最小化损失函数。梯度计算涉及链式法则、反向传播等关键技术,本文将围绕核心概念、计算步骤、实现方法及优化策略展开详细说明。
2025-06-21 14:29:44
353
原创 神经网络中的均方误差(Mean Squared Error)详解
在机器学习和神经网络领域,损失函数(Loss Function)是衡量模型预测值与真实值之间差异的关键指标。均方误差(Mean Squared Error, MSE)作为一种经典的损失函数,因其简单性、可解释性和数学上的优良性质,在回归问题中得到了广泛应用。本文将深入探讨MSE的定义、原理、应用场景、优缺点以及在神经网络中的实现细节。
2025-06-21 11:04:40
996
原创 神经网络基础组件精讲
神经网络是深度学习的核心架构,由多个基础组件构成:人工神经元作为基本计算单元,通过权重、偏置和激活函数进行非线性转换;单层神经网络实现简单映射,而多层神经网络通过隐藏层提取高阶特征;常见的激活函数包括Sigmoid、Tanh和ReLU,用于引入非线性能力;权重和偏置通过反向传播优化;输出层根据任务类型选用不同激活函数。这些组件协同工作,使神经网络能够学习复杂模式,解决分类、回归等多样化问题。理解这些基础结构对掌握深度学习原理至关重要。
2025-06-18 20:40:15
1040
原创 共现计数(Co-Occurrence Counts):自然语言中的语义关联量化基石
共现计数(Co-Occurrence Counts):自然语言中的语义关联量化基石
2025-06-17 09:01:59
369
原创 分布式词表示(Distributed Word Representation):自然语言处理的核心基石
分布式词表示(Distributed Word Representation):自然语言处理的核心基石
2025-06-17 08:59:12
445
原创 利用coze工作流制作一个自动生成PPT的智能体
在Coze平台中,通过工作流实现PPT自动化生成是一个高效且灵活的解决方案,尤其适合需要快速产出标准化演示文稿的场景。
2025-06-08 20:02:59
1503
原创 Gradle:Gradle的下载、安装和配置环境及idea配置指南
Gradle 是一个基于 Apache Ant 和 Apache Maven 理念的现代构建自动化工具,它使用 Groovy 或 Kotlin 编写的领域特定语言(DSL)来定义项目构建逻辑。Gradle 结合了 Ant 的灵活性和 Maven 的依赖管理,同时提供了更强大的功能和更简洁的语法。
2025-06-05 15:52:16
740
原创 元素 “cas:serviceResponse“ 的前缀 “cas“ 未绑定
错误信息“元素 'cas:serviceResponse' 的前缀 'cas' 未绑定”表明 XML 文档包含带有命名空间前缀 cas 的元素,但未定义或正确绑定该前缀。以下是解决此问题的步骤:
2025-06-05 08:46:32
524
原创 BM25检索与向量检索
本文对比分析了BM25检索和向量检索的技术原理、适用场景及优缺点。BM25基于词频统计,适用于关键词匹配和短文本检索,计算高效但无法处理语义;向量检索通过深度学习映射语义空间,适用于长文本和跨语言检索,但计算复杂。实际应用中可结合两者优势,采用混合检索方法提升性能。BM25多用于传统搜索引擎,向量检索则适用于智能问答等语义理解场景。
2025-05-29 08:51:03
920
原创 nginx二级目录代理minio公有桶和私有桶配置最佳指南
针对Nginx二级目录代理MinIO公有桶和私有桶的最佳实践配置指南,结合生产环境中的常见需求和安全要求
2025-05-24 21:45:00
441
原创 go 集成base64Captcha 支持多种验证码
base64Captcha是一个基于 Go 语言开发的验证码生成库,主要用于在 Web 应用中集成验证码功能,以增强系统的安全性.验证码类型丰富:支持生成多种类型的验证码,包括纯数字、纯字母、数字与字母组合、数学公式、汉字、音频等,满足不同场景的需求。
2025-05-16 16:11:37
591
原创 Go 语言中一个功能强大且广泛使用的数据验证库github.com/go-playground/validator/v10
`github.com/go-playground/validator/v10` 是 Go 语言中一个功能强大且广泛使用的数据验证库,主要用于对结构体字段进行数据校验,确保数据的合法性和完整性。
2025-05-01 21:27:49
651
原创 Gin 集成 prometheus 客户端实现注册和暴露指标
使用 Prometheus 提供的指标类型(如 Counter、Gauge、Histogram 等)定义需要监控的指标。
2025-04-30 20:45:00
633
原创 Gin 框架中集成 runtime/debug 打印日志堆栈信息
在 Gin 框架中,你可以使用 runtime/debug 包来打印调试信息,特别是在错误处理和日志记录方面。是 Go 标准库中一个用于调试和诊断的包,提供了多种功能来帮助开发者分析程序运行状态、排查问题以及优化性能。os.Stderr[]byterecoverpanicAllocTotalAllocSysNumGCMain.PathDeps通过合理使用,可以显著提升 Go 程序的调试效率和运行稳定性。
2025-04-27 10:38:45
760
原创 还在到处找MCP资源?这11个MCP资源库收好!
2024年年底,Anthropic提出并开源的MCP(Model Context Protocol),如今已成为AI编程及AI Agent领域的热门概念。不少小伙伴在后台询问MCP资源,今天就为大家整理了11个实用的MCP资源库,涵盖服务器托管、客户端工具、社区交流等多个方面,一起来看看吧!
2025-04-23 17:14:18
871
原创 基于百度地图 MCP Server规划规划一次青岛到北京旅行的详细行程实践
百度地图API现已全面兼容,是国内首家兼容MCP协议的地图服务商。百度地图提供的MCP Server,包含10个符合MCP协议标准的API接口,涵盖逆地理编码、地点检索、路线规划等。依赖和开发,任意支持MCP协议的智能体助手(如ClaudeCursor以及等)都可以快速接入。
2025-04-23 16:48:20
878
原创 Go语言之sync包 WaitGroup的使用和底层实现
在 Go 语言里,sync 包中的 WaitGroup 是一个实用工具,用于等待一组 goroutine 完成任务。其核心原理是通过内部维护一个计数器,该计数器初始值为 0,每启动一个新的 goroutine 就将计数器加 1,每个 goroutine 完成任务后会将计数器减 1,当计数器变为 0 时,意味着所有 goroutine 都已完成任务。下面为你展示WaitGroup。
2025-04-22 22:30:00
478
原创 Server-Sent Events一种允许服务器向客户端发送实时更新的 Web API
Server-Sent Events(SSE)是一种允许服务器向客户端发送实时更新的 Web API。它基于 HTTP 协议,提供了一种单向的、服务器到客户端的通信机制,客户端可以通过监听服务器发送的事件来接收实时数据。下面从原理、使用场景、代码示例等方面进行详细介绍。
2025-04-10 21:45:00
1766
原创 AI 大模型的标准化工具箱MCP (Model Context Protocol)
MCP (Model Context Protocol,模型上下文协议)定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。MCP 的目标是创建一个通用标准,使 AI 应用程序的开发和集成变得更加简单和统一。
2025-04-10 14:10:48
1147
原创 LangChain使用大语言模型构建强大的应用程序
LangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,并集成额外的资源,例如 API 和数据库。
2025-04-09 20:58:32
788
原创 golang 中 make 和 new 的区别?
Go语言中,`make` 和 `new` 都是用于内存分配的关键字,但它们在使用场景、返回值和初始化方式等方面存在一些区别
2025-04-08 14:55:43
421
原创 golang 性能优化分析工具 pprof
pprof是 Go 语言开发中不可或缺的性能分析工具,它能帮助开发者深入了解程序的性能瓶颈,从而有针对性地进行优化,提高程序的性能和稳定性。
2025-04-08 11:36:42
1282
原创 ComfyUI的本地私有化部署使用Stable Diffusion文生图
ComfyUI是一个基于节点流程的Stable Diffusion操作界面。
2025-04-06 16:27:32
1092
原创 chromadb 安装和使用
Chromadb 是一个开源的嵌入式向量数据库,专为现代人工智能和机器学习应用设计,旨在高效存储、检索和管理向量数据。
2025-04-06 12:44:26
951
原创 如何选择RAG的Embedding模型?
中文模型:bge-large-zh-v1.5, multilingual-e5-large, bce-embedding-base_v1,m3e-base,acge_text_embedding。最近在学习RAG技术,遇到了一个关于如何选择合适的Embedding模型的问题。如果你去搜索Embedding模型,你会发现现在有很多的Embedding模型,那么该如何来选择这种模型呢?大系列有:bge, jina, gte, bce, e5, m3e。既包含开源,也包含API,鱼目混杂,需要进一步验证和确认。
2025-04-06 11:06:28
803
原创 ollama 部署nomic-embed-text 模型和使用,计算句子相似度
nomic -embed-text是一个基于Sentence Transformers库的句子嵌入模型,主要用于特征提取和句子相似度计算。nomic-embed-text 是一款强大的文本嵌入工具,其高性能和灵活性使其成为处理复杂文本任务的理想选择,在学术研究和商业应用等领域都能为用户提供有力的技术支持。
2025-04-06 10:34:00
1096
ycsb-mongodb
2024-01-18
DmJdbcDriver
2023-02-27
mybatis-generator.zip
2020-02-29
noVNC-1.0.0.tar.gz
2019-09-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人