【深度学习】拉格朗日( Lagrange)中值定理

拉格朗日中值定理是微分学中的重要定理,它指出在连续且可导的函数上,存在一点的切线斜率等于弧段的平均斜率。这个定理在深度学习中对于理解梯度和优化过程有重要意义。通过构造辅助函数并应用罗尔定理,可以证明该定理,并进一步引出有限增量定理,为处理函数增量提供精确表达式。拉格朗日中值定理的几何意义和推论在实际问题中展现出其价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、定理

如果函数 f(x) 满足:

在闭区间[a,b]上连续;
在开区间(a,b)内可导。
那么在(a,b)内至少有一点ξ(a<ξ<b),使等式 :

f(b)-f(a)=f′(ξ)(b-a)

成立,或:

f′(ξ) =(f(b)-f(a)) / (b-a)

或存在0<θ<1,使:

f(b)-f(a) = f′(a+θ(b-a)) (b-a)

成立。

f(b)-f(a)=f′(ξ)(b-a) 也称为拉格朗日中值公式,后面两个式子是其简单变种。

2、几何意义

在这里插入图片描述

(f(b)-f(a))/(b-a)是线段AB的斜率,f′(ξ)的值就是AB的斜率,也是点C的切线斜率,表明点C的切线与线段AB平行。

因此拉格朗日中值定理的几何意义为:如果连续曲线y=f(x)的弧AB上除端点外处处有不垂直于x轴的切线,那么弧AB上至少有一点C,使点C处的切线平行于直线弦AB

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值