1、定理
如果函数 f(x) 满足:
在闭区间[a,b]上连续;
在开区间(a,b)内可导。
那么在(a,b)内至少有一点ξ(a<ξ<b),使等式 :
f(b)-f(a)=f′(ξ)(b-a)
成立,或:
f′(ξ) =(f(b)-f(a)) / (b-a)
或存在0<θ<1,使:
f(b)-f(a) = f′(a+θ(b-a)) (b-a)
成立。
f(b)-f(a)=f′(ξ)(b-a) 也称为拉格朗日中值公式,后面两个式子是其简单变种。
2、几何意义
(f(b)-f(a))/(b-a)是线段AB的斜率,f′(ξ)的值就是AB的斜率,也是点C的切线斜率,表明点C的切线与线段AB平行。
因此拉格朗日中值定理的几何意义为:如果连续曲线y=f(x)的弧AB上除端点外处处有不垂直于x轴的切线,那么弧AB上至少有一点C,使点C处的切线平行于直线弦AB