SD-AANet:Self-Distillation + 注意力模型用于小样本分割任务

SD-AANet是一种针对小样本分割任务的深度学习模型,结合Self-distillation和注意力机制。SDPM模块通过Self-distillation提取内在原型,解决Support和Query图像特征差异问题。SAAM模块利用Support标签指导生成高质量注意力图,增强Query图像分割性能。实验表明,SD-AANet在PASCAL-5i和COCO-20i数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

  • 前言
  • 概述
  • SD-AANet 整体架构
  • Self-distillation Guided Prototype Generating 模块
  • Supervised Affinity Attention 机制
  • 阶段总结
  • 实验和可视化分析
  • 结论
  • 参考链接
  • 同系列的文章

前言

本文是小样本语义分割系列的第四篇解读,每一篇的方法都具有代表性且不同,同系列的文章链接也在文末给出了(分别是 CWT-for-FSS、GFS-Seg 和 CD-FSS)。很多读者在刚学习小样本时可能觉的真的只需要少量样本就可以完成全部的学习过程,这不完全正确,实际上在训练的过程中我们仍然需要大量的样本,只不过我们在测试的时候,我们可以对未曾在训练集中出现过的测试图像类只用几张甚至一张 Support 图像(或者理解为在推理过程中用到的训练图像)来达到对所谓的 unseen 类的分割。而传统的图像分割网络是需要在训练集中也包含了测试集的类才能对测试图像进行分割,比如我想从一张有狗的测试图像里分割出狗,那么在训练集中也需要有分割狗的任务才行,小样本却不需要。

小样本分割任务有两个通用的可以去解决的问题,首先,Support 和 Query 图像之间存在特征差异导致知识迁移难,从而降低分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值