今天的LLM通过利用外部工具变得越来越强大——无论是计算器、网络搜索还是数据库。但随着工具数量的增加,头痛也随之而来。提示变得臃肿,选择适合特定任务的正确工具变得更加难以管理。RAG-MCP框架,用于解决LLMs在外部工具选择中的提示膨胀和决策复杂性问题。具体来说,
-
检索增强生成(RAG):RAG-MCP结合了检索增强生成(RAG)原则和MCP框架。RAG的核心思想是在推理时动态检索相关的知识片段,而不是一次性提供全部知识。
-
语义检索模块:开发了一个语义工具检索模块,将每个可用工具的元数据表示在向量空间中,并高效地将用户查询与最相关的工具匹配。这显著减少了提示的大小和复杂性,并提高了决策的准确性。
-
MCP压力测试:为了量化LLMs在选择工具时的性能下降,设计了一个MCP压力测试。在该测试中,模型被呈现N个MCP模式(一个真实值和N-1个干扰项),并要求其选择和调用正确的WebSearch MCP。通过变化N的值(从1到11100),测量选择准确性、任务成功率、提示令牌使用和延迟。
图1:MCP与RAG-MCP在推理过程中的比较。
":来源。
如图1右侧所示,RAG-MCP方法通过首先使用语义检索器从整个工具集中筛选出