RAG-MCP:通过检索增强生成缓解大型语言模型工具选择中的提示膨胀问题

今天的LLM通过利用外部工具变得越来越强大——无论是计算器、网络搜索还是数据库。但随着工具数量的增加,头痛也随之而来。提示变得臃肿,选择适合特定任务的正确工具变得更加难以管理。RAG-MCP框架,用于解决LLMs在外部工具选择中的提示膨胀和决策复杂性问题。具体来说,
在这里插入图片描述

  1. ​检索增强生成(RAG)​​:RAG-MCP结合了检索增强生成(RAG)原则和MCP框架。RAG的核心思想是在推理时动态检索相关的知识片段,而不是一次性提供全部知识。

  2. ​语义检索模块​​:开发了一个语义工具检索模块,将每个可用工具的元数据表示在向量空间中,并高效地将用户查询与最相关的工具匹配。这显著减少了提示的大小和复杂性,并提高了决策的准确性。

  3. ​MCP压力测试​​:为了量化LLMs在选择工具时的性能下降,设计了一个MCP压力测试。在该测试中,模型被呈现N个MCP模式(一个真实值和N-1个干扰项),并要求其选择和调用正确的WebSearch MCP。通过变化N的值(从1到11100),测量选择准确性、任务成功率、提示令牌使用和延迟。
    无

图1:MCP与RAG-MCP在推理过程中的比较。
":来源

如图1右侧所示,RAG-MCP方法通过首先使用语义检索器从整个工具集中筛选出

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值