在 Google Colab 中微调用于命名实体识别的 BERT 模型

本文介绍了如何在 Google Colab 上利用 GPU 加速,微调预训练的 BERT 模型进行命名实体识别(NER)任务。通过 HuggingFace 库加载数据,对数据进行预处理,调整标签以适应 BERT 的子词标记化,然后使用 Trainer API 进行模型训练。经过训练,模型在 LOC 和 PER 类别的 f1 分数达到 85% 以上,但在 ORG 类别上表现稍弱。文章还强调了 BERT 模型的高准确性和训练挑战,以及使用 HuggingFace 库的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

命名实体识别是自然语言处理(NLP)领域的一项主要任务。它用于检测文本中的实体,以便在下游任务中进一步使用,因为某些文本/单词对于给定上下文比其他文本/单词更具信息性和重要性。这就是 NER 有时被称为信息检索的原因,即从文本中提取相关关键词并将其分类为所需的类别。

借助命名实体识别,我们可以从医疗记录中提取一般性和特定领域的人员、地点、组织等,例如临床术语、药物、疾病等,以便更好地诊断。

先决条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TD程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值