RAGAS:实现检索增强生成的自动化评估

1. 背景

图片

检索增强生成(Retrieval Augmented Generation, RAG)作为当前解决大语言模型幻觉、知识更新、领域知识问题的有效方法,其热度不断攀升。RAG的本质是从语料库中提取相关文本,并与其原问题一并送入LLM进行处理。

虽然检索增强策略的优势显而易见,但实施过受到检索模型、所选语料库、大语言模型本身或提示词构建等众多因素的共同影响。因此,对检索增强系统的自动化评估显得尤为关键。

在实际操作中,RAG系统通常通过在某个参考语料库上测量困惑度(perplexity)来评估语言建模任务。然而,此类评估并不是能一直准确预测系统在实际应用中的表现。

因此,作者提出了RAGAS(Retrieval Augmented Generation Assessment),一个自动化评估检索增强生成系统的框架。

2. RAGAS评估策略

图片

定义:

在标准的检索增强生成(RAG)场景中

系统面对一个问题q时

首先检索相关上下文c(q)

随后利用这些上下文生成答案as(q)

构建RAG系统过程中,往往无法获取标注数据集或标准答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值