【华为OD机考真题】- 上班之路(B卷-200分)(C++版)

🔔本文收录于「最新最全华为OD机试真题(C++版)」专栏,手把手带你零基础教学华为OD机试。本题集提供最优题解思路,解题步骤,代码解析,复杂度分析及最优题解源码等,支持多语言题解,助你轻松拿捏OD机考,一举上岸!安利大家关注&&收藏&&订阅题库正在疯狂收录中,up!up!up!!
🚫提醒:拒绝一切代考/替考,违法必究!专栏所写题库均搜集于互联网,经过精心筛选和整理,结合数位十多年大厂实战经验资深大佬经验所撰,欢迎订阅。
  
💗订阅福利:一次订阅,可永久免费阅读,提供在线答疑解惑,后续题库更新皆可阅读使用!

🔥所有题目均有六种语言实现,汇总如下🔥

如上题库均已同步更新至最新华为OD机试真题,赶紧操练起来吧~~

📚1. 题目描述

📢 具体题目描述如下:

Jungle 生活在美丽的蓝鲸城,大马路都是方方正正,但是每天马路的封闭情况都不一样。地图由以下元素组成:
1.. 一空地,可以达到;
2.* 一路障,不可达到,
3.S一Jungle 的家;
4.T一公司;
其中我们会限制 Jungle 拐弯的次数,同时Jungle 可以清除给定个数的路障,现在你的任务是计算Jungle 是否可以从家里出发到达公司。

📝2. 输入描述

输入的第一行为两个整数tc (0 <= t,c <=100)t代表可以拐弯的次数,c代表可以清除的路障个数。
输入的第二行为两个整数 nm(1<=nm<=100),代表地图的大小。
接下来是 n 行包含 m 个字符的地图。nm 可能不一样大。
我们保证地图里有 ST

🖥️3. 输出描述

输出是否可以从家里出发到达公司,是则输出YES,不能则输出 NO

🔍4. 示例演示

✨4.1 示例1

输入:

2 0
5 5
..S..
****.
T....
****.
.....

输出:

YES

示例说明:

✨4.2 示例2

输入:

1 2
5 5
.*S*.
*****
..*..
*****
T....

输出:

NO

示例说明: 该用例中,至少需要拐弯1次,清除3个路障,所以无法到达。

✨4.3 示例3

输入:


输出:


示例说明:

温馨提醒: 大家在参加华为OD机试时,切记不要仅仅死记硬背题解代码。真正的通过率取决于你对代码的理解能力。建议你在理解基本原理和逻辑的基础上,模仿并自己编写代码,这样才能更有效地应对机试。

🔑5. 解题分析

🤔5.1 问题理解

这个问题要求我们模拟一个在地图上从家(S)到公司(T)的路径搜索。地图中有空地(.)、障碍物(*)以及两个关键点:家(S)和公司(T)。我们需要在给定的拐弯次数(t)和可以清除的障碍物数(c)限制下,判断是否可以从家出发到达公司。

  • 拐弯:每次路径的方向发生变化,视为一次拐弯。
  • 清除障碍物:如果路径上有障碍物(*),并且我们允许清除障碍物,则我们可以“跳过”障碍物。

💡5.2 解题思路

我们可以使用 深度优先搜索(DFS)广度优先搜索(BFS) 来解决此问题,DFS 更适合递归的路径探索。每当我们从一个单元格到达另一个单元格时,检查是否需要拐弯,是否有障碍物,如果这些条件符合,我们继续探索。

步骤:
  1. DFS搜索:从家(S)出发,尝试走到公司(T),在此过程中:

    • 如果当前路径与上一个路径方向不同,则增加拐弯次数。
    • 如果遇到障碍物并且还有清除次数,则可以清除障碍物并继续。
  2. 记录状态:使用一个 visited 数组来记录每个位置是否已访问过,以防止重复访问。

  3. 路径限制:每次递归调用时,检查当前的状态(拐弯次数、清除障碍物次数、当前坐标),并确保它们不超过给定的限制。

  4. 判断结果:如果成功找到从家到公司且符合限制的路径,输出 YES,否则输出 NO

🎯5.3 问题考点

  1. 深度优先搜索(DFS): 用于从起点出发探索所有可能的路径。
  2. 状态管理: 路径中的拐弯次数和清除障碍物的次数需要被跟踪和限制。
  3. 边界检查: 确保探索的路径不会越界,同时遵守题目中的限制。

📝5.4 解题步骤

  1. 输入解析: 读取最大拐弯次数 t,最大清除障碍次数 c,地图的行数和列数,接着读取地图。
  2. DFS路径探索: 对每个合法的路径,计算是否符合条件,如果符合,返回 YES
  3. 输出结果: 根据是否找到合法路径,输出 YESNO

💻6. 解题Coding

  根据如上题解思路,进行代码实战,大家请看如下,建议不要死记硬背代码,要理解其题型及实现思路,别担心,代码我都会给出超详细注释,你一定能看明白的。

✅6.1 代码实现(C++版)

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int max_turns;  // 最大转弯次数
int max_clears;  // 最大清除障碍次数
int num_rows;  // 地图行数
int num_cols;  // 地图列数
vector<vector<string>> grid;  // 地图

// 右, 左, 下, 上 四个方向的偏移量
vector<vector<int>> offsets = {{0, 1, 1}, {0, -1, 2}, {1, 0, 3}, {-1, 0, 4}};

// DFS 搜索函数
bool dfs(vector<vector<bool>>& is_visited, int x, int y, int turns_used, int clears_used, int last_direction) {
    // 如果当前的位置是终点 'T',返回 true
    if (grid[x][y] == "T") {
        return true;
    }

    // 标记当前位置已访问
    is_visited[x][y] = true;

    // 遍历四个方向
    for (const auto& offset : offsets) {
        int current_direction = offset[2];  // 当前方向
        int new_x = x + offset[0];  // 新的 x 坐标
        int new_y = y + offset[1];  // 新的 y 坐标
        bool turn_flag = false;  // 是否需要转弯
        bool break_flag = false;  // 是否遇到障碍物

        // 判断新的位置是否在地图范围内,且没有访问过
        if (new_x >= 0 && new_x < num_rows && new_y >= 0 && new_y < num_cols &&
            !is_visited[new_x][new_y]) {

            // 如果转弯,则增加转弯次数
            if (last_direction != 0 && last_direction != current_direction) {
                if (turns_used + 1 > max_turns) {
                    continue;  // 如果转弯次数超过最大限制,则跳过
                }
                turn_flag = true;
            }

            // 如果遇到障碍物,则增加清除次数
            if (grid[new_x][new_y] == "*") {
                if (clears_used + 1 > max_clears) {
                    continue;  // 如果清除次数超过最大限制,则跳过
                }
                break_flag = true;
            }

            // 递归调用 DFS,继续探索
            if (dfs(is_visited, new_x, new_y, turns_used + (turn_flag ? 1 : 0),
                    clears_used + (break_flag ? 1 : 0), current_direction)) {
                return true;  // 如果找到路径,则返回 true
            }
        }
    }

    return false;  // 如果没有找到路径,则返回 false
}

int main() {
    cin >> max_turns >> max_clears >> num_rows >> num_cols;  // 输入最大转弯次数、最大清除障碍次数、地图的行数和列数

    grid.resize(num_rows, vector<string>(num_cols));

    // 初始化地图,读取每个单元格的值
    for (int i = 0; i < num_rows; i++) {
        for (int j = 0; j < num_cols; j++) {
            cin >> grid[i][j];
        }
    }

    // 遍历地图,寻找起点 'S'
    for (int i = 0; i < num_rows; i++) {
        for (int j = 0; j < num_cols; j++) {
            vector<vector<bool>> is_visited(num_rows, vector<bool>(num_cols, false));  // 标记访问过的位置
            if (grid[i][j] == "S") {  // 找到起点
                // 从起点开始进行 DFS 搜索
                if (dfs(is_visited, i, j, 0, 0, 0)) {
                    cout << "YES" << endl;  // 如果找到路径,则输出 YES
                    return 0;
                } else {
                    cout << "NO" << endl;  // 如果没有路径,则输出 NO
                    return 0;
                }
            }
        }
    }
    cout << "NO" << endl;  // 如果遍历完没有找到路径,输出 NO

    return 0;
}

⏱6.2 时间&空间复杂度

时间复杂度

  • DFS:每个位置最多被访问一次,DFS 的时间复杂度为 O(num_rows * num_cols),其中 num_rows 是地图的行数,num_cols 是地图的列数。
  • 遍历地图:每个位置都会进行 DFS 搜索,因此遍历每个位置的时间复杂度为 O(num_rows * num_cols)
  • 总时间复杂度:最终的时间复杂度为 O(num_rows * num_cols)

空间复杂度

  • 存储地图:地图的存储空间为 O(num_rows * num_cols)
  • 访问标记数组:访问标记数组 is_visited 的空间复杂度为 O(num_rows * num_cols)
  • 递归栈空间:在最坏情况下,DFS 的递归深度为 O(num_rows * num_cols),因此递归栈的空间复杂度为 O(num_rows * num_cols)
  • 总空间复杂度:因此,空间复杂度为 O(num_rows * num_cols)

⛓‍💥6.3 代码解析

  1. 输入部分

    • 读取最大转弯次数 max_turns、最大清除障碍次数 max_clears、地图的行数 num_rows 和列数 num_cols
    • 使用二维数组 grid 存储地图的信息,地图中的每个位置要么是空地 (.)、起点 (S)、终点 (T) 或障碍物 (*)。
  2. DFS 搜索

    • dfs 函数是深度优先搜索的核心,递归地探索每个位置。
    • 如果当前位置是终点 T,返回 true,表示找到路径。
    • 每次递归时,检查当前的方向是否与上次方向不同,如果是,则增加转弯次数。
    • 如果遇到障碍物 *,则增加清除障碍次数。
    • 如果超过了最大转弯次数或清除障碍次数的限制,则跳过该路径。
  3. 遍历地图

    • 遍历整个地图,找到起点 S 后,从该点开始进行 DFS 搜索。
    • 如果找到通向终点的路径,输出 "YES",否则输出 "NO"

核心思想

  • 本问题的核心是通过 DFS 在地图中找到从起点 S 到终点 T 的路径,同时考虑转弯次数和清除障碍次数的限制。通过深度优先搜索,可以遍历所有可能的路径,并确保每次选择路径时不超过给定的转弯和清除次数限制。

📝6.4 小结

该程序利用深度优先搜索(DFS)解决了一个路径寻找问题,考虑了转弯和清除障碍的限制。程序的时间复杂度和空间复杂度均为 O(num_rows * num_cols),适合处理较大的地图数据。通过递归和回溯的方式,程序能够高效地找出是否存在满足条件的路径。

📥7. 附录源码(Java版)

  针对如上分享OD机试真题之外,这里我还开源全部OD机试原真题源码,供同学们一对一学习!对照每题都有题目号及详细代码注释。Gitee,例如题序号为1,则题解代码对应文件夹OD1,题序号为5,则题解代码对应文件夹OD5,以此类推,目的就是为了方便大家学习,一举上岸!(这里的题序号指专栏导航贴中表格一列的序号)

🧧福利赠与你🧧

  如果你还想学习更多相关OD真题题解,都建议直接毫不犹豫地学习此专栏「最新最全真题华为OD机试真题(全栈版)」,快速掌握Java、Python、C++、JavaScript、Go等多种热门语言详细解题,快速突破华为OD机试,实现350+高分目标。还将提供线上多端答疑交流,解决你的所有问题!

🎁安利其他语言版本题解册🎁

注意: 上述任意专栏一次订阅,获永久免费阅读权限,后续更新都能学习。
声明: 拒绝一切形式的代考,替考行为,务必诚信考试!!!本人所写题库均搜集于互联网。

👩‍💻Who am I?

我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主&最具价值贡献奖,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值