python 实现Gale-Shapley盖尔-沙普利算法

Gale-Shapley盖尔-沙普利算法介绍

Gale-Shapley算法,也称为延迟接受算法(deferred-acceptance algorithm),简称GS算法,是由美国数学家David Gale和Lloyd Shapley在1962年为了寻找一个稳定匹配而设计出的市场机制。这种算法在经济学、计算机科学等多个领域有广泛应用,主要用于解决匹配问题,特别是稳定匹配问题。

算法的基本思路

GS算法的核心在于通过一系列的邀约和拒绝过程,使两组对象间形成稳定的匹配关系。在市场匹配的场景中,可以假设市场一方(如男士、医疗机构等)向另一方(如女士、医学院学生等)发出邀约,而接收方则会对接到的邀约进行比较,保留自己认为最好的邀约,拒绝其他邀约。邀约被拒绝的一方会继续向其他对象发出新的邀约,直到没有对象希望再发出邀约为止。此时,接收方最终接受各自保留的邀约。

算法的关键特性

延迟接受:这是GS算法的一个重要特性。在GS算法中,合意的邀约不会立即被接受,而是暂时保留不被拒绝,直到所有可能的邀约都被考虑过后再做决定。
稳定性:GS算法确保找到的匹配是稳定的,即不存在两个人彼此更喜欢对方而愿意抛弃现有匹配的情况。

算法的应用领域

GS算法的应用非常广泛,包括但不限于:

婚姻匹配:最原始和直接的应用就是解决稳定婚姻问题,即如何为一定数量的男性和女性找到稳定的伴侣。
高考录取:可以用于高校招生过程中的录取机制,确保学生和学校的匹配是稳定的。
工作匹配:在劳动力市场中,用于雇主和求职者之间的匹配。
大学招生:学生可以被多个大学录取,但每个大学有一定的招生名额限制,GS算法可以确保匹配的稳定性和公平性。

算法的实践意义

GS算法不仅在理论上具有重要意义,而且在实际应用中也非常有价值。它提供了一种有效的市场机制,可以确保匹配结果的稳定性和公平性,避免了许多潜在的问题和冲突。此外,GS算法的思想还可以应用于许多其他领域,如资源分配、任务调度等,为实际问题的解决提供了有力的工具和方法。

需要注意的是,虽然GS算法在多个领域都有广泛的应用,但在具体使用时还需要根据实际情况进行调整和优化,以确保其适用性和有效性。

Gale-Shapley盖尔-沙普利算法python实现样例

Gale-Shapley算法是一个经典的稳定婚姻问题的解决算法,也叫做“男方提议算法”。下面是一个使用Python实现Gale-Shapley算法的示例代码:

def stable_matching(men
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值