bisection二分法算法介绍
Bisection二分法算法,也被称为二分法(Bisection method)或二分查找法,是一种在数学和计算机科学中广泛应用的算法。以下是对Bisection二分法算法的详细描述:
1. 基本概念
Bisection二分法算法是一种用来解决非线性方程根的数值计算方法,也常用于在有序数组中查找特定元素的过程。
2. 应用于求解非线性方程
算法步骤
确定初始区间[a, b]:选择两个点a和b,使得f(a)和f(b)异号(即f(a) * f(b) < 0),这保证在区间[a, b]内方程至少有一个根。
计算中点c:计算区间的中点c = (a + b) / 2。
判断中点c:
如果f©为零或者满足指定的精度要求,那么c就是方程的根,算法结束。
如果f(a)和f©异号,那么根位于[a, c]区间内,将b更新为c,然后重复步骤2。
如果f(b)和f©异号,那么根位于[c, b]区间内,将a更新为c,然后重复步骤2。
重复迭代:重复步骤2至3,直到满足精度要求或者达到最大迭代次数。
特点
算法简单易懂,易于实现。
对于单调的函数,可以保证收敛到唯一根。
收敛速度较快,每次迭代可以将根的范围减小一半。
对初始区间的选择较为敏感,不同的初始区间可能会收敛到不同的根。
算法只能保证找到一个根&#x