【阿里云】文本转语音方言— 阿里云语音合成,文本转语音方言工具类

该文介绍了如何使用阿里云SDK进行文本转语音操作,特别是针对方言的支持。首先需要创建阿里云账号,获取appKey等认证信息,然后设置保存语音的本地路径。通过调用Java工具类的方法,传入文本和方言类型,即可完成转换。文章还展示了具体的Java代码实现,包括创建NlsClient、设置声音参数以及处理合成的语音数据。此外,创建的JavaBean用于根据省份设置方言发音人。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、导入SDK坐标

二、文本转语音方言 —步骤和工具类

1.登录阿里云账号,创建一个语音合成项目和创建用户并设置权限。

2.获取appKey、accessKeyId、accessKeySecret在相应位置进行填写。

3.相应位置填写自己需要保存的本地路径。意思就是说,自己定一个转化的语音存放在本地的一个位置。

4.测试,调用工具类中的方法uploadSoundOSS(String text,String voiceStr) ,传入一个自己需要转化的文本信息,和所在的省份名称进行测试就可以了。

三、创建JavaBean — 与文本转语音的不同


一、导入SDK坐标

<dependency>
    <groupId>com.alibaba.nls</groupId>
    <artifactId>nls-sdk-tts</artifactId>
    <version>2.2.1</version>
</dependency>

二、文本转语音方言 —步骤和工具类

1.登录阿里云账号,创建一个语音合成项目和创建用户并设置权限

2.获取appKey、accessKeyId、accessKeySecret在相应位置进行填写。

3.相应位置填写自己需要保存的本地路径。意思就是说,自己定一个转化的语音存放在本地的一个位置。

4.测试,调用工具类中的方法uploadSoundOSS(String text,String voiceStr) ,传入一个自己需要转化的文本信息,和所在的省份名称进行测试就可以了。

//文字转语音方言
public class SoundOSS_Dialect {
    private static String appKey = "自己的appKey";
    private static String accessKeyId = "自己的accessKeyId";
    private static String accessKeySecret = "自己的accessKeySecret";
    static NlsClient client ;

    public static String uploadSoundOSS(String text,String voiceStr) {
        String url = UUID.randomUUID().toString().replace("-", "");
        SpeechSynthesizerDemo("");
        //自己选一个本地路径填写
        File f =new File("需要保存在本地的路径"+url+".wav");
        process(text,f,voiceStr);
        client.shutdown();
        return f.getAbsolutePath();
    }

    public static void  SpeechSynthesizerDemo(String url) {
        AccessToken accessToken = new AccessToken(accessKeyId, accessKeySecret);
        try {
            accessToken.apply();
            if(url.isEmpty()) {
                client = new NlsClient(accessToken.getToken());
            }else {
                client = new NlsClient(url, accessToken.getToken());
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    private static SpeechSynthesizerListener getSynthesizerListener(File f) {
        SpeechSynthesizerListener listener = null;
        try {
            listener = new SpeechSynthesizerListener() {
                FileOutputStream fout = new FileOutputStream(f);
                private boolean firstRecvBinary = true;
                //语音合成结束
                @Override
                public void onComplete(SpeechSynthesizerResponse response) {
                    //调用onComplete时表示所有TTS数据已接收完成,因此为整个合成数据的延迟。该延迟可能较大,不一定满足实时场景。
                    System.out.println("name: " + response.getName() +
                            ", status: " + response.getStatus()+
                            ", output file :"+ f.getAbsolutePath()
                    );
                }
                //语音合成的语音二进制数据
                @Override
                public void onMessage(ByteBuffer message) {
                    try {
                        if(firstRecvBinary) {
                            //计算首包语音流的延迟,收到第一包语音流时,即可以进行语音播放,以提升响应速度(特别是实时交互场景下)。
                            firstRecvBinary = false;
                        }
                        byte[] bytesArray = new byte[message.remaining()];
                        message.get(bytesArray, 0, bytesArray.length);
                        fout.write(bytesArray);
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
                @Override
                public void onFail(SpeechSynthesizerResponse response){
                    //task_id是调用方和服务端通信的唯一标识,当遇到问题时需要提供task_id以便排查。
                    System.out.println(
                            "task_id: " + response.getTaskId() +
                                    //状态码 20000000 表示识别成功
                                    ", status: " + response.getStatus() +
                                    //错误信息
                                    ", status_text: " + response.getStatusText());
                }
            };
        } catch (Exception e) {
            e.printStackTrace();
        }
        return listener;
    }
    public static void process(String text,File f,String voiceStr) {
        SpeechSynthesizer synthesizer = null;
        try {
            //创建实例,建立连接。
            synthesizer = new SpeechSynthesizer(client,getSynthesizerListener(f));
            synthesizer.setAppKey(appKey);
            //设置返回音频的编码格式
            synthesizer.setFormat(OutputFormatEnum.WAV);
            //设置返回音频的采样率
            synthesizer.setSampleRate(SampleRateEnum.SAMPLE_RATE_16K);
            //发音人
            Sound_Voice voice = new Sound_Voice(voiceStr);
            if (voiceStr == null){
                synthesizer.setVoice("chuangirl");
            }else {
                synthesizer.setVoice(voice.getSpeaker());
            }

            //语调,范围是-500~500,可选,默认是0。
            synthesizer.setPitchRate(100);
            //语速,范围是-500~500,默认是0。
            synthesizer.setSpeechRate(100);
            //设置用于语音合成的文本
            synthesizer.setText(text);
            // 是否开启字幕功能(返回相应文本的时间戳),默认不开启,需要注意并非所有发音人都支持该参数。
            synthesizer.addCustomedParam("enable_subtitle", false);
            //此方法将以上参数设置序列化为JSON格式发送给服务端,并等待服务端确认。
            long start = System.currentTimeMillis();
            synthesizer.start();
            //等待语音合成结束
            synthesizer.waitForComplete();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //关闭连接
            if (null != synthesizer) {
                synthesizer.close();
            }
        }
    }

}

三、创建JavaBean — 与文本转语音的不同

不同就在于方言发言人的设置,不同的地域方言阿里云有不同的发言人,可以根据所在的地域省份设置相应的发言人

 创建方言类,有参传入所在地的省份进行就可以了。通过调用getSpeaker()方法就可以获取到对应的发言人。

目前阿里云所支持的方言只有以下几种。

//方言定义类

@Data
@NoArgsConstructor
public class Sound_Voice implements Serializable {
    public String voiceStr ;
    public String speaker ;

    public Sound_Voice(String voiceStr) {
        switch (voiceStr){
            case "广东":
                this.speaker = "taozi";
                this.voiceStr = "广东";
                break;
            case "东北":
                this.speaker = "cuijie";
                this.voiceStr = "东北";
                break;
            case "天津":
                this.speaker = "aikan";
                this.voiceStr = "天津";
                break;
            case "四川":
                this.speaker = "chuangirl";
                this.voiceStr = "四川";
                break;
            case "香港":
                this.speaker = "kelly";
                this.voiceStr = "香港";
                break;
            case "台湾":
                this.speaker = "qingqing";
                this.voiceStr = "台湾";
                break;
            case "湖南":
                this.speaker = "xiaoze";
                this.voiceStr = "湖南";
                break;
        }
    }
}

<think>嗯,用户想了解或开发语音交互系统的相关信息,特别是关于开发实现的技术。首先,我需要回顾一下用户提供的引用内容,确保引用正确。用户提到了引用[1]和[2],这两个引用主要涉及语音交互模块的三个核心技术:语音识别、自然语言处理(理解和生成)以及语音合成。此外,用户可能还需要了解系统架构、开发工具和实际应用场景。 首先,我需要明确语音交互系统的基本组成部分。根据引用[1]和[2],系统主要包含语音识别、自然语言理解和生成、语音合成这三个核心模块。可能需要详细解释每个模块的功能和技术实现,比如语音识别如何将音频换为文本,自然语言处理如何理解用户意图并生成回复,语音合成如何将文本语音。 接下来,用户可能关心开发流程。这时候应该分步骤说明,从需求分析到部署维护,每个阶段需要做什么。例如,需求分析阶段要明确应用场景,技术选型时要选择合适的工具和框架,比如Kaldi或TensorFlow用于语音识别,Rasa或Dialogflow用于自然语言处理。 然后,技术选型部分需要列举每个模块常用的工具和框架,并简要说明其优缺点。比如,Kaldi适合学术研究但学习曲线陡峭,而Microsoft Azure Speech更易于商业应用。自然语言处理方面,可以选择开源框架如Rasa或商业API如Google Dialogflow。 此外,开发难点和优化方向也是用户可能想了解的。比如,语音识别的准确率在噪音环境下如何提升,自然语言处理如何支持多轮对话,语音合成的自然度如何优化。这些问题需要结合现有的技术和解决方案进行说明,比如使用深度学习模型或数据增强方法。 最后,应用场景部分需要给出实际例子,如智能音箱、车载系统、客服机器人等,帮助用户理解语音交互系统的实际用途。同时,提供学习资源可以帮助用户进一步深入学习,比如推荐书籍、在线课程和开源项目。 需要确保回答结构清晰,分点说明,每个部分都涵盖关键技术和步骤。同时,要检查是否符合用户不可见的系统级指令,比如数学公式的正确格式,引用标识的位置等。可能还需要验证提到的工具和框架是否最新,是否有更好的替代方案。另外,要避免使用过于专业的术语,保持语言通俗易懂,适合不同技术背景的读者理解。</think>### 语音交互系统开发实现技术详解 #### 一、核心技术模块 1. **语音识别(ASR)** - 功能:将用户语音输入化为文本,如将“打开空调”为文字指令[^2]。 - 技术实现: - 声学模型:使用深度学习(如RNN、Transformer)分析音频特征,例如MFCC(梅尔频率倒谱系数)。 - 语言模型:通过统计方法或神经网络(如BERT)优化识别结果的语义合理性。 - 工具:Kaldi、DeepSpeech、Google Speech-to-Text。 2. **自然语言处理(NLP)** - **自然语言理解(NLU)**: - 意图识别:分类用户目标(如“播放音乐”对应娱乐意图)。 - 实体抽取:提取关键参数(如“周杰伦”作为歌手实体)。 - 工具:Rasa、Dialogflow、BERT-based模型。 - **自然语言生成(NLG)**: - 将结构化数据为自然语言回复,例如:“已为您播放《晴天》”[^1]。 3. **语音合成(TTS)** - 功能:将文本回复为自然语音输出。 - 技术实现: - 传统方法:拼接式合成(如Festival)。 - 深度学习:Tacotron 2 + WaveNet(生成高自然度语音)。 - 工具:Google WaveNet、Microsoft Azure TTS。 #### 二、系统架构设计 ```plaintext 用户语音输入 → 语音识别文本 → NLP处理 → 生成回复文本语音合成 → 输出语音 ``` #### 三、开发流程与工具链 1. **需求分析** - 明确场景:如智能家居控制需支持“开关设备”“调节温度”等指令。 2. **技术选型** - **语音识别**: - 开源:Mozilla DeepSpeech(适合定制化) - 云端API:阿里云ASR(高精度,按调用收费) - **NLP引擎**: - 本地部署:Rasa(支持私有化部署) - 云端服务:LUIS(微软语言理解服务) - **语音合成**: - 个性化声音:Resemble.ai(克隆特定人声) 3. **开发示例(Python伪代码)** ```python # 语音识别示例 import speech_recognition as sr recognizer = sr.Recognizer() with sr.AudioFile("input.wav") as source: audio = recognizer.record(source) text = recognizer.recognize_google(audio) # 调用Google ASR API # NLP处理(使用Rasa) from rasa.nlu.model import Interpreter interpreter = Interpreter.load("rasa_model") result = interpreter.parse(text) intent = result["intent"]["name"] # 语音合成示例(pyttsx3本地合成) import pyttsx3 engine = pyttsx3.init() engine.say("已执行" + intent) engine.runAndWait() ``` 4. **优化方向** - 语音识别: - 增加领域自适应训练(医疗/金融等专业术语) - 使用数据增强技术提升噪声环境鲁棒性 - NLP: - 引入知识图谱处理复杂查询(如“周杰伦的导师的成名作”) - 支持多轮对话状态管理(DST) #### 四、典型应用场景 1. **智能家居中控** - 实现语句:“把客厅灯光调至50%亮度” → 需联动IoT设备控制协议(如MQTT)。 2. **车载语音助手** - 特殊要求:离线识别(无网络时仍可用)、低延迟响应(<500ms)。 3. **无障碍交互** - 技术特性:支持方言识别(如粤语)、情感识别(检测用户情绪)。 #### 五、学习资源推荐 1. 书籍:《语音与自然语言处理实践》(O'Reilly) 2. 开源项目: - Mozilla TTS(端到端语音合成) - Snips NLU(轻量级意图识别引擎) 3. 数据集: - LibriSpeech(英文语音识别) - AISHELL-3(中文多说话人合成)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多多钟意你吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值