小罗碎碎念
在医学AI领域,罕见肿瘤的超声诊断面临数据稀缺与特征复杂性的双重挑战。
传统数据增强方法(如旋转、裁剪等)难以捕捉罕见亚型的独特病变特征,导致模型易误判。例如,甲状腺癌中滤泡癌(FTC)、髓样癌(MTC)等罕见亚型因样本量少(FTC仅占3-5%,MTC占1-3%),现有AI模型在区分其与良性结节或常见乳头状癌(PTC)时准确率不足。
此外,现有生成模型多依赖类别标签(如疾病名称)生成数据,缺乏对结节内部结构、边缘特征等细粒度属性的控制,难以真实模拟罕见亚型的多样性。
针对上述问题,研究提出文本引导的生成模型Tiger Model,通过融合临床知识与图像生成提升罕见亚型数据的真实性与多样性。
模型架构分为粗训练(Coarse-Training)和细训练(Fine-Training)阶段:
- 粗训练阶段:基于超声图像与文本报告对,利用Stable Diffusion学习甲状腺结节的通用特征(如回声、钙化等)。
- 细训练阶段:引入双编码器结构(FG-Encoder与BG-Encoder),分别控制结节前景(FG)与背景(BG)的细粒度特征。例如,通过YoloV8分割结节区域生成前景条件图像,结合Sobel边缘检测提取背景结构,再通过注意力融合模块(Attentional Fusion)实现前景与背景的语义对齐。
模型通过疾病知识库(包含12类超声特征,如成分、回声纹理、边缘等)生成文本提示,引导模型生成包含罕见亚型独特特征组合的合成图像(如FTC的“实性、等回声、无钙化”与MTC的“不规则边缘、侵犯被膜”)。
交流群
欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。
目前小罗全平台关注量67,000+
,交流群总成员1500+
,大部分来自国内外顶尖院校/医院,期待您的加入!!
由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业
,即可邀您入群。
知识星球
对推文中的内容感兴趣,想深入探讨?在处理项目时遇到了问题,无人商量?加入小罗的知识星球,寻找科研道路上的伙伴吧!
一、文献概述
本文提出了一种文本引导的扩散模型——Tiger模型,旨在解决罕见甲状腺癌亚型超声诊断中数据稀缺和模型性能不足的问题。
通过融合临床文本描述与图像生成,该模型显著提升了罕见亚型检测的准确性和鲁棒性,为医学AI在罕见病领域的应用提供了新方向。
1-1:研究背景与挑战
医学AI的困境
传统医学AI在罕见肿瘤诊断中面临数据稀缺问题,尤其是甲状腺癌罕见亚型(如滤泡状癌FTC、髓样癌MTC、间变性癌ATC)因发病率低,导致样本不足、特征覆盖不全,易引发误诊漏诊。
现有方法的局限
- 传统数据增强(如旋转、裁剪)易破坏医学图像的临床特征,不适用医疗场景。
- 现有生成模型(如生成对抗网络GAN、扩散模型)在罕见病中存在样本多样性不足、模式崩溃等问题,难以捕捉罕见亚型的独特特征组合。
1-2:Tiger模型架构与创新
模型设计
- 粗-细训练框架:
- 粗训练(Coarse-Training):基于Stable Diffusion预训练,学习甲状腺超声图像的通用特征。
- 细训练(Fine-Training):引入前景(FG-Encoder)和背景(BG-Encoder)编码器,分别控制结节和周围组织的特征生成,并通过注意力融合模块(Attentional Fusion)实现前景-背景的协同生成。
- 文本引导机制:利用临床知识库(包含12类超声特征,如回声、钙化、形态等)生成精细化文本提示,引导模型生成具有特定病理特征的合成图像。
数据与训练
- 收集10家医院的40,571例甲状腺患者数据,包含21,920例良性、13,552例常见乳头状癌(PTC)及4,102例FTC、997例MTC、274例ATC等罕见亚型。
- 采用5折交叉验证,结合超声图像与文本报告训练模型,并通过外部数据集(如乳腺超声、胸部X光)验证泛化能力。
1-3:关键结果与验证
图像生成质量评估
- 定量指标:
- Tiger模型在结构相似性(SSIM)、CLIP-MMD、梯度相似性(GS)等指标上显著优于Stable Diffusion等基线模型,生成图像的结构真实性和特征多样性更优。
- 例如,FTC亚型的SSIM比Stable Diffusion高39.34%,FID(弗雷歇 inception 距离)降低16.69%,表明生成图像更接近真实数据。
- 医生评估:
- 图灵测试:50名超声医生对生成图像的真实性判断中,Tiger模型生成图像的正确率达92.2%,接近真实图像的98%,远超其他生成方法(如Stable Diffusion仅29.4%)。
- 特征识别测试:医生对Tiger生成图像的10项超声特征识别准确率达81.5%-84.1%,与真实图像(84.2%-87.9%)接近,验证了生成图像的临床可信度。
诊断性能提升
- 在罕见亚型(FTC、MTC)的良恶性分类中,Tiger-F(特征引导)模型的AUROC分别提升14.64%和9.45%,显著优于传统增强方法和其他生成模型。
- 小样本场景下,仅添加50例生成样本即可使分类AUC提升0.07以上,证明模型在数据稀缺场景中的有效性。
泛化能力验证
- 在外部数据集(如乳腺癌超声、儿童胸部X光)中,Tiger模型在罕见亚型(如乳腺小叶癌ILC、间变性甲状腺癌ATC)的诊断中,AUROC比基线提升12.6%-20.3%,显示跨模态和跨病种的泛化能力。
1-4:讨论与展望
- 临床意义
- Tiger模型通过文本引导生成高保真、多样化的超声图像,填补了罕见亚型数据缺口,提升了AI诊断的公平性和可靠性,尤其对改善罕见病患者的预后具有重要价值。
- 模型生成的图像可辅助医生理解复杂病理特征,促进人机协作诊断。
- 局限性与未来方向
- 目前研究限于甲状腺癌,未来需扩展至其他罕见病(如肉瘤、罕见血液病)及不同人群(如儿童、老年人)。
- 进一步优化生成样本数量与诊断性能的量化关系,探索模型在实时超声引导穿刺等临床场景的应用。
1-5:结论
文本引导的扩散模型Tiger通过融合临床知识与图像生成,有效解决了罕见甲状腺癌亚型诊断中的数据瓶颈,显著提升了AI模型的准确性和泛化能力,为医学AI在罕见病领域的临床转化提供了创新框架。
二、Tiger Model 训练与评估流程介绍
数据来源
Tiger Model的训练数据来自医院和学术期刊的甲状腺超声图像及对应报告 。
医院数据提供临床实际病例信息,期刊数据则涵盖研究成果相关病例,丰富了数据多样性。
训练依据
基于疾病亚型特征差异,借助疾病知识(Prompt )进行训练。
疾病信息包含良恶性、病理亚型、结节描述、背景描述等,模型从中提取特征共性与差异,以生成罕见亚型特征。
流程环节
- 数据增强:通过Tiger Model生成合成图像,扩充数据量,为分类模型训练提供更多样本。
- 分类模型训练:利用增强后的数据集(合成图像与真实数据合并)训练分类模型,用于判断甲状腺疾病的良恶性。
- 评估验证:从两个维度评估生成图像。一是通过专业医生进行图灵测试(Physician Turning Test )判断图像真实性;二是运用经典评估指标(Classical Evaluation )和CLIP评估指标衡量图像的真实性与多样性。
三、Tiger Model架构设计与训练要点
3-1:粗训练(Coarse - Training)
- 数据输入:输入超声图像及对应的文本提示(Prompt ),文本提示包含疾病相关特征描述,如恶性、实性、宽高比等。
- 模型模块:采用Stable Diffusion(SD)的编码器和解码器结构。SD编码器有多个模块(SD Encoder Block_1到SD Encoder Block_4 ),逐步对图像进行下采样,如从64×64尺寸降到8×8尺寸 ;SD解码器(SD Decoder Block_1到SD Decoder Block_4 )则进行上采样恢复图像尺寸。此阶段学习甲状腺结节的通用特征。
3-2:细训练(Fine - Training)
- 前景(FG)处理
- 条件生成:通过分割模型(SegM)得到前景条件图像(Condition FG Image ),结合前景文本提示(Condition FG Prompt )。
- 编码模块:利用FG - Encoder的多个模块(FG - Encoder Block_1到FG - Encoder Block_4 )对前景特征进行提取,模块会对图像进行不同尺度的处理,如从64×64到8×8 。
- 背景(BG)处理
- 条件生成:对原始图像使用Sobel算子处理并添加高斯噪声,得到背景条件图像(Condition BG Image ),结合背景文本提示(Condition BG Prompt )。
- 编码模块:通过BG - Encoder的多个模块(BG - Encoder Block_1到BG - Encoder Block_4 )提取背景特征,同样进行不同尺度处理。
- 融合模块(Fusion Module):将前景和背景的特征通过融合模块进行整合。融合模块中包含卷积操作(Conv1、Conv2 )等,通过加权空间变换器(Weighted - SpatialTransformer)实现前景与背景语义对齐,最终生成包含细粒度特征的图像。
3-3:整体应用
Tiger Model基于疾病亚型特征差异训练构建,生成增强数据集,与真实数据合并用于训练分类模型,同时通过专业测试和计算机视觉指标评估生成图像的真实性和多样性。
结束语
本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!