引言
随着深度学习技术的快速发展,计算机视觉领域取得了显著的进展。目标检测作为计算机视觉的核心任务之一,广泛应用于自动驾驶、安防监控、医疗影像分析等领域。YOLO(You Only Look Once)系列算法因其高效、准确的特点,成为目标检测领域的热门选择。本文将详细介绍如何使用YOLOv5实现花卉检测与识别系统,并提供完整的代码、PySide6界面设计以及训练过程。
1. YOLOv5简介
YOLOv5是YOLO系列的最新版本之一,由Ultralytics公司开发。相比于YOLOv4,YOLOv5在模型结构、训练速度和推理速度上都有显著提升。YOLOv5支持多种模型规模(如YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x),用户可以根据硬件条件和任务需求选择合适的模型。
1.1 YOLOv5的核心改进
- 自适应锚框计算:YOLOv5在训练过程中自动计算锚框尺寸,减少了手动调参的工作量。
- 数据增强:YOLOv5内置了丰富的数据增强策略,如Mosaic数据增强、随机裁剪、颜色抖动等,提升了模型的泛化能力。
- 模型轻量化:YOLOv5通过优化网络结构和训练策略,实现了更高的推理速度和更低的计算资源消耗。
2. 花卉检测与识别系统设计
2.1 系统架构
本