计算GPS两个点之间的距离

文章介绍了如何通过两点的经纬度坐标(A,B)以及它们的对角坐标(C,D)来确定一个四边形平面,并利用地球半径、三角函数和几何关系计算出四边形的边长,如AC=BD=2Rsin(Δlat/2)。进一步,文章探讨了如何求解AB的长度以及对应的圆心角,以计算弧度长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:

Https://blog.csdn.net/u011339749/article/details/125048180

任意两点对应的经纬度A(lat0,long0),B(lat1,long1)

则C(lat1,long0),D(lat0,long1)。通过A、B、C、D四个点可以确定一个四边形平面。同一纬度相互平行,可知连接ACBD四点构成了一个等腰梯形。

设地球半径R,

AO'=Rcos(lat0),其中lat0是A点的纬度

△AO'D中∠AO'D=long1-long0=∆long,

 注释:这里AD的一半可以连一条辅助线从到AD交点假设为X0,就是∠AX0的角度

AD=2AO'sin(∆long/2)=2Rcos(lat0)sin(∆long/2)

同理:CO''=Rcos(lat1)   ,即R是CO那条边

再三角形CO''B

CB=2CO''sin(∆long)=2Rcos(lat1)sin(∆long/2)

∠AOC=lat0-lat1=∆lat

从O点连辅助线到AC,交点为X,则∠AOX为∆lat,由于AO=CO(都是地球半径),则AX=AC,那么AX=AOsin(∆lat),即AX=Rsin(∆lat)则AC=2AX=2Rsin(∆lat)

可知:AC=BD=2Rsin(∆lat/2)

现在求AB的长度,得知AB的长度后,可以求得对应的圆心角,进而求得

由于ACBD是等腰四边形,那么建立辅助线,可知AGHF是矩形,因此,AG=HF,AD=2AG,CB=2CF

则CH=CF-HF=CF-AG=CB-AD=(CB-AD)

因此可得

求得AB的长度,这时,只要求得AOB,即以AB为弦的同心圆的圆心角,从而求得(A到B那段圆形的长度,即弧度)

sin(∠AOC)=AC:AO=:AO=AB:2AO=AB:2R

=AB:2R

在这里要反三角给出的是弧度值

弧度与角度及半径的关系如下:

则:

距离公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值