计算机视觉与深度学习 | Python实现EEMD-LSTM时间序列预测(完整源码和数据)

EEMD-LSTM时间序列预测

  • **一、核心原理**
  • **二、代码实现**
    • **1. 环境准备**
    • **2. 数据加载与分解**
    • **3. 数据预处理**
    • **4. LSTM模型构建与训练**
    • **5. 预测与重构**
    • **6. 结果可视化**
  • **三、数据集说明**
  • **四、关键参数调优**
  • **五、性能优化建议**
  • **六、完整源码与数据**
  • **七、常见问题**
  • **总结**

以下是使用Python实现EEMD-LSTM时间序列预测的完整方案说明,包含核心代码框架、数据说明及实现步骤。本方案结合了信号分解(EEMD)与深度学习(LSTM)的优势,适用于非平稳时间序列预测任务,如股票价格、气象数据、交通流量等场景。


一、核心原理

  1. EEMD分解

    • 通过集合经验模态分解(Ensemble Empirical Mode Decomposition)将原始时间序列分解为多个本征模态函数(IMFs)和残差项(Residue)。
    • IMFs具有不同频率特征,残差项表示趋势信息,分解后各分量更易被LSTM模型捕捉。
  2. LSTM建模

    • 对每个IMF分量独立训练LSTM模型,捕捉其局部时序特征。
    • 将各分量的预测结果加权求和,重构最终预测值。

二、代码实现

1. 环境准备


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值