CS231n-模型参数初始化--Weight Initialization

本文讨论了深度学习模型初始化的重要性和常见方法。全零初始化会导致神经元失去差异性,而使用小的随机数可以打破对称性,使神经元计算不同的更新。权重通常从均值为0、标准差为1的高斯分布中初始化,以确保每个神经元在输入空间中指向随机方向。对于ReLU激活函数,有时会将偏置初始化为一个小常数值以确保开始时所有单元都能激活,但零初始化也是常见的选择。建议遵循He等人的建议,使用特定的初始化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Before we can begin to train the network we have to initialize its parameters.

1、Pitfall: all zero initialization. Lets start with what we should not do. Note that we do not know what the final value of every weight should be in the trained network, but with proper data normalization it is reasonable to assume that approximately half of the weights will be positive and half of them will be negative. A reasonable-sounding idea then might be to set all the initial weights to zero, which we expect to be the “best guess” in expectation. This turns out to be a mistake, because if every neuron in the network computes the same output, then they will also all compute the same gradie

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星月夜语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值