python 实现cosine annealing strategy

本文介绍了如何使用Python实现余弦退火(Cosine Annealing)学习率策略,该策略在训练深度学习模型时能有效调整学习率,以达到更好的优化效果。文中给出了具体的结果,并提供了基于PyTorch的实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import math
import matplotlib.pyplot as plt
import torch.optim as optim
from torchvision.models import resnet18

lr_rate = 0.0001
model = resnet18(num_classes=10)

# T_max = 1000

epoch_total = 25
epoch_iter = 609
warm_up = 800

lambda1 = lambda epoch: (epoch / warm_up) if epoch < warm_up else 0.5 * (math.cos((epoch - warm_up)/(epoch_total*epoch_iter - warm_up) * math.pi) + 1)
optimizer = optim.SGD(model.parameters(), lr=lr_rate, momentum=0.9, nesterov=True)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)

index = 0
x = []
y = []
for epoch in range(epoch_total):
    for batch in range(609):
        x.appe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星月夜语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值