深度强化学习 | 基于SAC算法的移动机器人路径跟踪(附Pytorch实现)

0 专栏介绍

本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学习技术在机器人运动规划中的实战应用

🚀详情:《运动规划实战精讲:深度强化学习篇》


1 软性演员-评论家SAC算法

软性演员-评论家(Soft Actor-Critic, SAC)算法是基于最大熵原理的离线策略方法,具有高效的采样效率和泛化能力。SAC的核心原理在于三个参数化公式:

  • 参数化动作-价值函数
    J ( w ) = 1 2 E [ ( Q ( s , a ; w ) − ( r s → s ′ + γ max ⁡ a ′ ( Q ^ ( s ′ , a ′ ; w ^ ) − α log ⁡ π ( s ′ , a ′ ; θ ) ) ) ) ] J\lef

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值