自然语言处理NLP-100例 | 第二篇:在线课程评论情感分析-本科毕设实战案例

本文分享了一篇使用Python进行在线课程评论情感分析的本科毕设案例,涉及数据导入、分词处理、Word2vec模型及支持向量机(SVM)情感分类,最终实现情感预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是K同学啊~

春去秋来,时间就这样嘀嗒嘀嗒的过去,不知道大家的毕设做得怎么样了呢

K同学就今天和大家分享一篇关于在线课程评论情感分析的实战案例,帮助大家找找灵感。

数据用的是一份公开的在线课程评论数据,我的环境如下

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • gensim版本号:4.0.1

你可以使用下面的语句配置好 gensim

pip install gensim==4.0.1 -i https://pypi.mirrors.ustc.edu.cn/simple/

如果你对自然语言处理方面的文章有兴趣的话,或许📚《自然语言处理NLP-实例教程》有你想要的

如果你想找一些毕设相关的实战案例做参考,你可以在📚《深度学习100例》找到带源码和数据的实战案例,深度学习小白建议先从📚《小白入门深度学习》

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值