自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

weixin_55010563的博客

希望可以帮到你

  • 博客(2694)
  • 收藏
  • 关注

原创 HTTPS 的通信加解密过程,证书为什么更安全?

证书中包含了服务器的公钥和其他身份信息。6.客户端和服务器使用对称密钥进行加密通信:客户端和服务器通过协商好的对称密钥进行加密和解密,这意味着数据传输过程中使用相同的密钥进行加密和解密,保证了数据传输的机密性和完整性。证书的使用能够确保服务器的身份和通信的安全性,增加了整个通信过程的安全性和可信度。4.客户端生成密钥:如果证书有效,客户端会生成一个用于对称加密通信的随机密钥,并使用服务器的公钥进行加密。5.服务器解密消息:服务器收到客户端发来的加密密钥后,使用自己的私钥对其进行解密,获取对称加密的密钥。

2023-12-13 14:02:52 540

原创 【渲染流水线】[几何阶段]-[图元装配]以UnityURP为例

本文解析Unity URP渲染管线中的图元装配过程,详细介绍了通过MeshTopology和索引缓冲区定义图元类型的实现方法。重点阐述了五种图元(三角形、三角形条带等)的连接规则与顶点分组模式,特别强调了顶点缠绕顺序对表面剔除的影响。文章提供了URP中不同图元类型的代码实现示例,包括三角形、线段和点等,并指出底层实现的核心类与调试方法。最后指出可通过继承ScriptableRendererFeature实现自定义几何处理,为开发者理解URP渲染机制提供了实用指导。

2025-08-17 08:05:41 272

原创 在本地部署Qwen大语言模型全过程总结

本文详细介绍了在消费级显卡(RTX 4060 8GB)上本地部署Qwen1.5-7B-Chat大语言模型的全过程。主要内容包括:1)通过量化技术(4-bit/8-bit)解决显存不足问题;2)使用HF-Mirror下载模型;3)Ubuntu系统下的环境配置,包括显卡驱动安装、多版本CUDA切换方法;4)依赖库安装与虚拟环境搭建;5)最终通过Python脚本实现模型加载与对话功能。文章提供了从理论计算到实践部署的完整解决方案,特别针对国内开发者遇到的网络问题和环境配置难题给出了具体解决方法。

2025-08-17 08:04:27 432

原创 Nginx反向代理Kafka集群

摘要:本文介绍了使用Nginx反向代理Kafka集群的配置方法。通过修改Kafka的advertised.listeners为Nginx代理地址(kafka-cluster:8000),并配置Nginx的stream模块实现TCP代理。测试环境采用单机部署(Nginx 1.28和Kafka 2.13-3.9.1),使用firewalld限制只开放8000代理端口。客户端需在hosts文件中添加代理地址映射,最终实现客户端通过Nginx安全访问Kafka集群的功能。

2025-08-17 08:03:50 271

原创 一步一步学习使用LiveBindings(15)TListView进阶使用(3),创建自定义的列表项打造天气预报程序

本文介绍了如何在Delphi中创建自定义的TListView列表项,并用于天气预报程序开发。主要内容包括:1. 创建Delphi包实现自定义列表项,继承TPresetItemObjects基类,添加最低/最高温度显示字段;2. 通过LiveBindings实现数据绑定,将天气数据保存到内存表并显示;3. 自定义列表项具有响应式布局功能,能根据空间自动调整显示。文章详细讲解了关键方法重载、对象管理、数据成员设置等核心实现,并提供了完整的代码示例。通过将组件打包安装到IDE,可在多个项目中复用这种自定义列表项。

2025-08-17 08:03:13 450

原创 Python零基础从入门到精通详细教程2-变量与常量

本文详细介绍了Python中的变量与常量概念。变量作为存储数据的容器,包含数据类型、内存地址和值三要素,Python变量无需声明类型,具有动态特性。教程详解了变量命名规则(蛇形/驼峰命名法)、赋值方式(单个/多个变量赋值)、类型转换及内存管理机制,并强调"="是赋值而非数学等号。虽然Python没有真正意义上的常量,但惯例用全大写命名表示。通过实例演示了变量交换、内存地址变化等操作,并提供了苹果价格计算、个人信息存储等练习题。文章最后指出变量不能同时指向多个值,但可通过重新赋值改变引用对

2025-08-17 08:02:35 171

原创 【CRAIC】工业缺陷检测实训平台 模型训练指导手册 V1.4

《工业缺陷检测实训平台模型训练指导手册V1.4》摘要 本手册详细介绍了基于PaddleDetection框架的工业缺陷检测模型训练全流程,适用于铝片表面缺陷检测场景。主要内容包括:图像采集规范、数据集标注方法(使用labelImg工具)、模型训练流程(基于AIStackDC平台)、模型评估与优化、模型转换(使用opt工具转为FPGA支持的.nb格式)以及FPGA开发板部署方案。手册特别强调了训练环境配置(Python3.7/3.8)、数据标注规范(5类缺陷)和模型精度要求(mAP需>65%)。同时提供

2025-08-17 08:01:58 290

原创 扣子Coze实战:零基础搭建数据分析智能体,1分钟完成复盘,流量翻10倍

【摘要】本文介绍了如何利用AI智能体快速搭建短视频数据分析工具,帮助创作者高效复盘视频表现。通过Coze平台,只需1分钟即可生成专业的数据分析报告,包括关键指标对比、受众匹配度诊断、流量结构分析等,并给出具体优化建议(如前3秒钩子优化、互动引导强化等)。文章详细演示了从获取视频数据、搭建工作流到创建智能体的完整流程,让零基础用户也能快速上手。这种数据驱动的优化方法可显著提升视频表现,案例显示播放量提升62%,完播率增长282%。

2025-08-17 08:01:21 244

原创 伙伴匹配系统(移动端 H5 网站(APP 风格)基于Spring Boot 后端 + Vue3 - 03

伙伴匹配系统开发摘要 本项目是基于SpringBoot后端+Vue3前端开发的移动端H5伙伴匹配系统(APP风格)。系统实现了用户登录、修改信息等功能,并针对大数据处理进行了优化。关键技术点包括: 数据批量导入:采用分批导入策略(10/100/1000/10000),避免单次大数据量处理 并发编程:使用线程池和CompletableFuture实现高效并发处理 性能优化: 实现分页查询(MyBatis-Plus分页插件) 引入Redis缓存提高查询效率 自定义Redis序列化器解决数据乱码问题 定时任务:通

2025-08-17 08:00:43 180

原创 BFS 广度优先搜索算法

BFS(广度优先搜索)是一种基于队列的图遍历算法,适用于无权图的最短路径查找。其核心机制是逐层扩展节点,保证找到最短路径。时间复杂度O(N),空间复杂度O(N)。文章通过迷宫寻路问题展示了BFS的具体实现:初始化标记数组和方向向量,使用队列处理节点,通过回溯前驱节点输出完整路径。代码示例包含地图初始化、BFS核心逻辑和路径回溯功能,并演示了如何解决4x4迷宫问题。此外还介绍了BFS的优化方法(如双向BFS)和变种(如A*算法),并拓展到CTF逆向题中的应用场景。

2025-08-15 08:06:00 685

原创 夜莺监控的几种架构模式详解

夜莺监控架构模式解析 夜莺监控(Nightingale)是一款开源的告警引擎系统,专注于整合告警能力。核心架构包括: 数据源对接:支持Prometheus、VictoriaMetrics等各类数据源 告警引擎:周期性查询数据并生成告警事件 告警分发:通过FlashDuty等媒介通知 UI交互:内置API模块进行规则配置和事件查看 系统依赖MySQL存储规则,Redis缓存数据。夜莺可与Categraf配合实现数据采集,但需外接TSDB存储。针对多机房场景,还支持边缘架构模式解决网络连通问题。该方案有效解决了

2025-08-15 08:03:33 281

原创 博客园众包:再次诚征3D影像景深延拓实时处理方案(预算8-15万,需求有调整)

【摘要】博客园再次发布3D影像景深延拓实时处理需求,预算8-15万元。需求调整为:1)将双视角影像实时处理为全景深3D画面,确保透视准确;2)实现3840×2160@60Hz实时显示,延迟≤100毫秒(单帧<16.67ms),需保证流畅无卡顿。项目方位于杭州,支持线下沟通。诚邀技术专家参与,促进资源整合。

2025-08-15 08:02:56 158

原创 PO、VO、BO、DTO、DAO、POJO傻傻分不清楚

本文系统介绍了Java开发中常见的PO、VO、BO、DTO、DAO、POJO六种对象的区别与应用。PO是数据库映射对象,DAO封装数据访问,BO处理业务逻辑,DTO用于跨层传输,VO适配前端展示,POJO是基础数据容器。文章对比了传统三层架构与DDD架构的对象流转模型,推荐了MapStruct、Dozer等高效转换工具,并指出了常见使用误区。最后提出四个核心原则:单一职责、安全隔离、性能优先和适度设计,帮助开发者合理选择对象模型。

2025-08-15 08:02:20 625

原创 这个Web新API让任何内容都能画中画!

《Web画中画API全解析:从视频到任意内容的PiP实现》 本文介绍了两种实现Web画中画(PiP)功能的API方法。传统方法使用video.requestPictureInPicture(),支持将视频元素放入浮动窗口,兼容性良好,适用于主流浏览器。新推出的documentPictureInPicture.requestWindow()功能更强大,支持将任意HTML内容嵌入画中画窗口,但目前兼容性有限。 文章详细演示了传统API的实现代码,包括请求进入/退出画中画、事件监听等核心功能,并对比了新旧API的

2025-08-15 08:01:43 235

原创 一步一步学习使用LiveBindings(13) TListView的进阶使用(1)

本文介绍了在Delphi中使用LiveBindings实现TListView列表项高度自适应的进阶技巧。通过分析VariableHeightItems示例项目,详细讲解了如何利用OnUpdateObjects事件动态调整列表项高度,包括:1)根据文本内容计算所需高度;2)使用TTextLayout测量文本尺寸;3)绘制包含高度指示器的位图。项目展示了如何通过随机生成不同字体大小和长度的文本来验证自适应效果,并提供了缓存位图优化性能的方案。这些技术可用于开发需要动态显示可变内容的高性能列表界面。

2025-08-15 08:01:07 835

原创 MCP神器!MCP-USE 一键部署连接任何MCP服务器

《MCP-USE:开源工具简化LLM与MCP服务器集成》 mcp-use是一款开源的Python工具库,专为简化LLM与MCP服务器的连接而设计。它支持多种主流LLM提供商(如OpenAI、Anthropic等),通过简单的JSON配置即可快速构建自定义MCP智能体。该工具具有三大核心优势:1)完全开源,不依赖闭源客户端;2)支持多服务器连接和动态选择;3)提供沙盒执行、工具访问控制等高级功能。开发者只需通过pip安装,即可用几行代码实现LLM与各类工具(如网页浏览、文件操作)的无缝集成。典型应用场景包括配

2025-08-15 08:00:30 268

原创 记一次 .NET 某汽车控制焊接软件 卡死分析

这篇文章分析了一个.NET汽车控制焊接软件卡死的问题。通过分析dump文件,发现主线程卡在NtWaitForSingleObject等待事件完成,而Ctrl+C无法退出程序。进一步检查发现有一个GC线程正在执行,且被AisEsmUmh.dll(一个端点检测响应安全软件)注入,并在关键代码段阻塞了执行流。最终确认是安全软件导致了程序的卡死问题。

2025-08-13 08:05:23 482

原创 微软开源的 MCP 教程「GitHub 热点速览」

本周GitHub热点聚焦多个优质开源项目:微软推出MCP技术教程,系统讲解多语言开发实践;Google开源的LangExtract利用大模型高效提取文本结构化信息;轻量级TTS模型KittenTTS以6k星登顶,支持流畅语音生成;零代码认证中间件Tinyauth和双语翻译插件kiss-translator分别简化登录集成和网页翻译流程。此外,精准网页截图库snapdom和浏览器版JupyterLab等工具也值得关注。这些项目覆盖AI应用、开发工具和安全认证等多个技术领域。(149字)

2025-08-13 08:04:47 281

原创 Flutter SizeTransition:让你的UI动画更加丝滑

Flutter的SizeTransition组件能实现流畅的UI尺寸动画效果,让元素展开/收缩更加自然。相比传统AnimatedContainer方案,它通过直接操作RenderBox获得更好的性能表现,避免了不必要的布局计算。开发者可以通过sizeFactor属性控制动画进度,并组合其他动画组件创造复杂效果。文章还介绍了自定义动画曲线、响应式设计等高级用法,同时提醒注意内存管理和性能优化,建议在适当场景使用SizeTransition来提升用户体验。

2025-08-13 08:04:10 478

原创 iptables服务详解

摘要:本文详细介绍了Linux防火墙工具iptables的安装配置、表链结构及常用操作。内容包括:关闭SELinux和Firewalld后安装iptables服务、加载内核模块的方法;解析四表(Filter/NAT/Mangle/Raw)五链(INPUT/OUTPUT/FORWARD等)的工作流程;提供常用命令如规则查看(-L)、添加(-A)、删除(-D)、清空(-F)及端口转发配置示例;最后说明规则的备份(iptables-save)与恢复方法。重点讲解了默认规则解析和SNAT/DNAT地址转换的实现,适

2025-08-13 08:03:34 612

原创 Linux 内核启动过程中的日志输出阶段分析

Linux内核启动日志输出问题分析:硬件原理图显示日志通过UART2(GPIO3_A2/A3)输出,但设备树中UART2被禁用。关键发现是earlycon直接配置为UART2地址(0xff570000),而console=ttyFIQ0通过Rockchip的FIQ调试器接管输出,其设备树配置rockchip,serial-id=<2>明确绑定到UART2,从而解释了为何禁用状态下仍能输出日志。

2025-08-13 08:02:57 391

原创 【译】Visual Studio 2015 停用:针对旧版本 Visual Studio 的支持提醒

微软提醒用户VisualStudio2015将于2025年10月14日停止支持,建议升级至VisualStudio2022。新版提供AI代码补全、Git集成等增强功能。同时公布了各版本支持期限:VS2017支持至2027年4月,VS2019至2029年4月,VS2022主流支持至2027年1月。停用后,VS2015所有版本及组件将不再获得更新,包括开发工具、运行库等。用户应及时迁移项目至新版本工具集。

2025-08-13 08:02:21 332

原创 基于线段树的数据结构

本文针对竞赛中常见的线段树问题进行了系统分类,将其分为三类:第一类线段树处理线性操作(如区间加减),第二类处理非线性操作(如区间乘加),第三类处理复杂信息合并(如最大子段和)。每类问题都通过典型例题(如P3372、P3373、P6492)展示具体实现,重点分析了操作顺序依赖性、信息合并规则等关键点。文章提供了详细的代码模板和解题思路,强调标记下传和区间合并的特殊处理方式,帮助选手快速识别不同线段树问题的解法特点。

2025-08-13 08:01:44 324

原创 AES 加密模式演进:从 ECB、CBC 到 GCM 的 C# 深度实践

本文系统梳理了AES加密模式的演进历程,重点对比了ECB、CBC和GCM三种核心模式。ECB模式虽然简单高效但安全性最低,会暴露原始数据模式;CBC通过引入初始向量(IV)提高了安全性,但存在串行加密和填充攻击风险;GCM作为现代认证加密模式,结合了CTR加密和GMAC认证,兼具高性能和完整性验证能力。文章通过C#代码示例展示了各模式的实现方式,并通过基准测试证明GCM在性能上比CBC快14%-26%。最后指出GCM已成为TLS 1.3等现代协议的首选加密方案,是当前最安全高效的AES应用模式。

2025-08-13 08:01:07 384

原创 将虚拟机从PVE上迁移至EXSI详细步骤!!!(避免踩坑)

【PVE迁移至ESXi完整指南】关键步骤:1.停止PVE虚拟机并确认磁盘位置;2.使用qemu-img将qcow2转为vmdk格式;3.在ESXi创建空虚拟机;4.通过vmkfstools转换磁盘为精简配置;5.挂载磁盘时需临时使用IDE模式;6.特别注意网卡配置变更和驱动问题,需添加vmw_pvscsi驱动;7.最后将磁盘控制器改回SCSI模式。本文汇总了实际迁移中的常见坑点,相比网上零散教程更全面可靠,可避免重复踩坑。

2025-08-13 08:00:30 325

原创 浅谈C++ const

本文通过分析两段C++代码的差异,揭示了const关键字的优化机制。当const变量在编译期可确定时(如直接赋值为1),编译器会进行符号表替换优化,直接使用常量值而忽略后续修改;而当初始化值在运行期才能确定(如使用rand()函数)时,编译器会像普通变量一样处理,允许通过const_cast修改。文章通过汇编代码对比,展示了编译器在不同情况下的优化策略,解释了为何两段逻辑相似的代码会产生不同的输出结果(1和42)。

2025-08-12 12:26:46 373

原创 糟糕,生产环境频繁Full GC,怎么办?

摘要: 线上服务频繁FullGC会导致严重性能问题。本文介绍了FullGC的触发机制(老年代空间不足)及危害(服务暂停、超时等),并提供排查方案:通过jstat监控GC指标、jmap转储堆内存、MAT分析泄漏。优化建议包括:对象池化减少大对象创建、调整JVM参数(如Survivor区比例)、升级ZGC降低暂停时间、治理堆外内存,以及替换无界缓存为Caffeine等。案例中支付系统因缓存未清理导致FullGC,优化后实现零FullGC。核心原则:在架构设计阶段预留内存缓冲,避免被动调优。

2025-08-12 12:26:09 236

原创 Dubbo源码—1.服务发布的主要流程

Dubbo源码—1.服务发布的主要流程大纲1.Dubbo 2.7和3.x版本的区别2.Dubbo服务的基本流程和启动入口3.Dubbo服务发布的主流程4.服务发布时执行相关组件的初始化5.服务发布时执行的服务实例刷新操作6.服务发布时执行的服务实例初始化操作7.服务发布时执行的服务实例发布操作8.执行服务实例发布操作时的主流程9.服务发布过程中ProxyFactory生成Invoker10.服务发布过程中Protocol组件发布Invoker11.服务发布过程中NettyServer的构造流程12.服务发布

2025-08-12 12:25:32 475

原创 ChatGpt 5系列文章1——编码与智能体

OpenAI推出的GPT-5在编码能力上取得重大突破,在SWE-bench测试中达到74.9%的准确率,比前代提升5.8%。其突出特点包括:代码理解深度提升、前端开发性能优化(70%任务优于前代)、工具调用准确率达96.7%,事实错误率降低80%。新API提供verbosity、reasoning_effort等精细控制参数,支持自定义工具和前置消息。GPT-5推出三个版本满足不同需求,定价从0.25$/M到10$/M不等,标志着AI辅助编程进入新阶段。

2025-08-12 12:23:30 294

原创 AES 加密模式演进:从 ECB、CBC 到 GCM 的 C# 深度实践

本文深入探讨了AES加密模式的演进历程,从初代的ECB模式到现代主流的GCM模式。通过C#代码示例,详细分析了ECB、CBC和GCM三种模式的工作原理、安全特性和性能表现。ECB模式虽然简单但存在严重安全隐患;CBC通过引入IV解决了部分问题,但仍面临填充预言攻击风险;GCM作为当前最先进的认证加密模式,兼具高性能和安全特性。基准测试显示GCM比CBC快14%-26%,推荐在TLS 1.3等现代协议中优先采用。文章还通过图像加密演示直观展示了不同模式的安全差异,并提供了完整的C#实现代码。

2025-08-12 12:22:54 891

原创 Linux 内核启动过程中的日志输出阶段分析

摘要:本文分析了Linux内核启动过程中日志输出阶段的问题。通过对比原理图发现实际日志通过UART2输出,但设备树仅启用了UART0。分析表明: earlycon阶段直接通过0xff570000(UART2地址)输出早期日志 标准console阶段使用ttyFIQ0,因设备树中UART2被标记为disabled fiq-debugger配置显示其绑定到UART2(rockchip,serial-id=<2>),接管日志输出 问题根源在于设备树配置与实际硬件不一致,导致日志输出通过非标准路径实现。

2025-08-12 12:22:16 234

原创 【渲染流水线】[应用阶段]-[渲染命令队列]以UnityURP为例

本文深入解析Unity URP渲染管线的核心流程,重点探讨了应用阶段的渲染命令队列实现机制。文章详细介绍了从模型数据获取(顶点坐标、法线、UV等)、变换矩阵计算(MVP矩阵)到渲染状态设置(剔除、深度测试等)的全过程。通过分析ScriptableRenderContext和CommandBuffer的工作原理,揭示了URP中渲染命令队列的组织方式,包括渲染状态与渲染指令的交替执行模式。特别剖析了ShaderLab配置状态的解析与处理流程,并提供了动态修改渲染状态的代码示例。文章还对比了PC与移动设备在显存管

2025-08-12 12:21:40 831

原创 ntp时间同步服务详解

NTP(网络时间协议)详解:搭建与配置指南 NTP是一种基于UDP的应用层协议(端口123),用于同步分布式网络中设备的时间。本文详细介绍了NTP服务的搭建过程: 服务端配置: 安装ntp软件包 修改/etc/ntp.conf配置文件 设置上层时间服务器(推荐阿里云NTP服务器) 配置访问权限和日志记录 建议先手动校正时间再启动服务 客户端配置: 安装ntpdate工具 使用ntpdate命令同步服务器时间 可选配置系统与硬件时间同步 验证方法: 使用ntpq -p命令查看同步状态 通过ntpstat检查同

2025-08-12 12:21:04 295

原创 【实战】让AI理解用户的文化背景:开源项目Saga Reader自动翻译的技术实现

开源项目SagaReader 0.9.10版本引入智能语言偏好系统,通过Rust+Svelte+Tauri技术栈实现跨平台文化敏感阅读体验。该系统自动检测用户系统语言并支持手动覆盖,采用sys-locale库实现毫秒级检测,Rust类型系统确保配置安全。技术亮点包括零拷贝字符串处理、动态AI提示构建和响应式前端集成,使内存占用<10KB且不影响启动速度。该功能体现了现代Rust桌面应用开发的精髓,让AI输出自动适配用户文化背景,为多语言扩展奠定基础。

2025-08-07 08:06:19 914

原创 [快速阅读十一] 伊拉克团队的TAGC(低光增强效果)算法实现。

伊拉克团队提出了一种无需训练的低光图像增强算法TAGC,通过动态计算伽马校正参数实现优异效果。该算法基于亮度分布分析,自动计算适合的伽马值,包含亮度因子计算、平均颜色因子提取、自适应伽马系数确定、伽马校正四个步骤。核心代码展示了如何对RGB图像进行实时处理,通过亮度加权和颜色平均计算最优伽马值,实现高效的低光增强。该方法简单有效,性能媲美深度学习模型。

2025-08-07 08:05:06 225

原创 .NET周刊【7月第3期 2025-07-20】

本期.NET周刊聚焦技术优化与创新实践,涵盖多个关键领域: 性能优化:深入解析Redis客户端超时问题与.NET线程池管理策略,探讨dotnetty内存泄漏修复及Channel技术实现数据库查询性能平衡; 开发工具更新:Visual Studio支持.slnx新格式,Uno Platform 6.1发布,JetBrains工具迎来升级; 框架与组件:MASABlazor开源组件库、MCP C# SDK重大更新助力AI与LLM集成,Semantic Kernel多Agent协作模式详解; 云与微服务:Azur

2025-08-07 08:03:53 243

原创 HarmonyOS SDK使能美团高效开发,打造优质创新应用体验

摘要:美团基于HarmonyOS SDK深度适配,打造创新用户体验。通过AccountKit实现华为账号一键登录,消除验证环节;利用ScanKit实现锁屏扫码一步开锁共享单车;借助LiveViewKit在系统触点展示骑行实时信息,支持锁屏关锁操作。这些技术优化使美团在登录、骑行等高频场景实现"零感操作",大幅提升使用便捷性,让生活服务更简单流畅。

2025-08-07 08:03:16 175

原创 Golang笔记之Redis

本文介绍了Golang中使用go-redis库操作Redis的详细方法,内容包括:1)安装和连接Redis;2)字符串操作(Set/Get);3)哈希操作(HSet/HGet/HDel等);4)列表操作(RPush/LRange/LPop等);5)集合操作(SAdd/SMembers/SDiff等);6)有序集合操作(ZAdd/ZRangeByScore等);7)通用命令(Exists/Expire/Del/TTL)。文章通过具体代码示例展示了各种Redis数据类型的CRUD操作,包括单字段/多字段处理、范

2025-08-07 08:02:40 246

原创 【译】Visual Studio Copilot 中更智能的人工智能编辑

Visual Studio Copilot通过推测解码技术实现更智能的AI代码编辑。传统基于规则的方法存在50%成功率局限,无法处理复杂场景。新一代解决方案将快速模型与高级模型配对:前者预生成编辑标记,后者负责验证完善,使编辑速度提升2-3倍。系统通过AI模拟"理想代码版本",智能比对差异实现精准修改。虽然网络调用带来延迟,但流式动画设计让用户实时感知编辑过程。测试表明开发者更看重编辑准确性(90%+成功率)而非瞬时响应,该技术现能智能处理代码重叠、语法缺失等复杂情况,显著提升开发体验。

2025-08-07 08:02:01 223

原创 你应该懂得AI大模型(十三) 之 推理框架

大模型推理框架是优化预训练大模型部署的关键工具,专注于提升响应速度、降低资源消耗和简化工程落地。主流框架包括:vLLM(高吞吐量)、TextGenerationInference(HuggingFace生态)、TensorRT-LLM(NVIDIA硬件优化)、LMDeploy(轻量多场景适配)和DeepSpeed-Inference(超大规模模型)。选型需考虑性能指标、硬件兼容性、模型适配和部署复杂度。以LMDeploy为例,演示了从环境配置、模型下载到服务启动的完整部署流程,支持国产模型Qwen的高效推理

2025-08-07 08:01:25 329

图片格式转换-批量高效

在日常工作和生活中,我们经常需要处理大量的图片文件。PNG格式因其无损压缩和透明背景特性而被广泛使用,但在某些场景下(如网页优化、打印、上传到某些平台等),我们可能需要将PNG转换为更通用的JPG格式。手动转换不仅效率低下,还容易出错。为此,我开发了一款**「专业PNG转JPG批量转换工具」**,支持一键批量转换,保持画质无损,并具备友好的图形界面。

2025-04-11

基于python的微信记账小程序

基于python的微信记账小程序

2025-04-22

基于springboot的园林绿化管理系统

基于springboot的园林绿化管理系统

2025-04-22

骚神插件8.5版本,助理元素快速定位,脚本开发

骚神插件8.5版本,助理元素快速定位,脚本开发

2025-04-02

抖音视频关键词采集、视频评论采集

抖音视频关键词采集、视频评论采集

2025-03-28

心血管预测分析-网站-flask-速随机森林-mysql

管理员:用户管理、操作日志管理、数据集管理与分析、模型监控; 用户:健康数据管理与分析、健康评估、风险预测

2025-02-23

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

2025-03-27

数据集-途家民宿评论信息

数据集-途家民宿评论信息-数据分析-景点分析等

2025-03-11

基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议 报告涵盖数据预处理、财务分析、产品分析、市场分析

电商数据分析报告 概述 本报告基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议。报告涵盖数据预处理、财务分析、产品分析、市场分析和客户分析五个部分。 数据预处理 本模块旨在对电商订单数据进行预处理,以确保数据的质量和一致性,为后续的分析工作打下坚实的基础。预处理步骤包括数据验证、日期格式处理、缺失值处理、异常值处理、数据标准化以及时间特征的添加。 相关代码: def preprocess_data(data):     # 添加数据验证     assert 'Order Date' in data.columns, "缺少订单日期列"     assert 'Total Amount' in data.columns, "缺少总金额列"     # 处理日期格式     data['Order Date'] = pd.to_datetime(data['Order Date'])     # 处理缺失值     data.fillna({'Shipping Status': '未知

2024-12-02

python 大数据分析 招聘历史数据集

采集了多年来各大平台各个时间段多行业多岗位的就业数据

2025-02-02

windows计划任务python脚本调度器工具

## 计划任务调度器工具介绍 **概述:** 计划任务调度器是一款功能强大且易于使用的工具,旨在帮助用户自动化重复性任务。通过该工具,用户可以轻松设置和管理计划任务,例如定时执行脚本、备份数据或发送电子邮件等。 **主要功能:** * **任务设置:** * **脚本文件选择:** 用户可以选择需要执行的脚本文件。 * **任务类型:** 支持多种任务类型,包括每天、每周、每月或自定义间隔执行。 * **执行时间:** 用户可以指定任务的具体执行时间。 * **自定义间隔:** 对于需要频繁执行的任务,用户可以设置自定义间隔时间(以秒为单位)。 * **任务管理:** * **添加任务:** 用户可以添加新的计划任务。 * **启动/停止任务:** 用户可以随时启动或停止已添加的任务。 * **导出日志:** 工具提供日志导出功能,方便用户查看任务执行情况。 * **任务监控:** * **任务名称:** 显示所有已添加任务的名称。 * **执行时间:** 显示每个任务的最近执行时间。

2025-01-15

python打包工具-windows一键打包运行

Python打包工具,支持将Python脚本打包成独立的可执行文件

2025-01-15

python安装包!!快速下载!!!

python安装包!!快速下载!!!

2024-12-02

游览器插件!快速便捷!!助理数据采集

游览器插件

2024-12-02

大厂面试必备-深入剖析Java基础之面向对象特性

内容概要:本文深入讲解了Java基础中的面向对象特性,包括封装、继承、多态、抽象等四个核心特性。每个特性都有详细的理论解释和示例代码,帮助读者理解和应用这些概念。此外,文章还比较了Java和C++的主要区别,介绍了final、finally和finalize的区别,重载与重写的区别,反射机制,以及Java的泛型机制及其实现原理。最后,文章详细阐述了Java中值传递与引用传递的区别。 适合人群:初级和中级Java开发者,准备大厂面试的技术人员。 使用场景及目标:① 深入理解Java面向对象的核心特性,提升编程能力和代码质量;② 掌握Java与C++的主要区别,选择合适的语言进行开发;③ 区分final、finally和finalize的作用,理解重载与重写的区别,熟练运用反射和泛型机制;④ 清楚理解Java中值传递与引用传递的差别。 其他说明:本文内容丰富,涵盖多个知识点,建议读者逐个章节学习,结合示例代码实践,以达到更好的学习效果。

2024-11-27

Java开发腾讯面试重点解析-关键字与语法

内容概要:本文详细解析了 Java 开发中常见的面试题,涵盖了 static 关键字、transient 和 volatile 关键字以及 synchronized 的原理和应用。针对每个关键字,文章不仅介绍了其基本概念,还通过具体代码示例进行了详细说明,包括静态变量、静态方法和静态代码块的使用场景,以及 volatile 保证多线程可见性的机制。最后,讨论了 memory leak(内存泄漏)的原因和解决方法,以及如何实现一个不可变类。 适合人群:具备一定 Java 编程基础的开发人员,尤其是准备腾讯或其他大型互联网公司面试的技术人员。 使用场景及目标:帮助求职者更好地理解和掌握 Java 中重要关键字和机制,提高面试成功率。同时也适用于已经在职但希望巩固基础和优化代码质量的 Java 开发者。 其他说明:本文内容丰富且实用,既有理论讲解也有代码实战,建议读者在阅读过程中动手实践,以便更好地理解和掌握知识点。

2024-11-27

咸鱼关键词多价格采集数据

用于从二手电商平台(如闲鱼)上自动采集商品数据的工具。它能通过输入关键词、设置价格区间等参数,快速获取指定商品的相关信息。这类工具常用于市场分析、价格趋势研究或辅助电商运营。

2024-11-27

在虚拟机中模拟DDoS攻击,并配置相应防御策略 考试题目如下: 模拟SYN 洪水攻击及防御,模拟Smurf攻击及防御,模拟do

一、实验背景目的及原理 1. 模拟SYN洪水攻击及防御 实验背景: SYN洪水攻击(SYN Flood)是一种广为人知的拒绝服务(DoS)攻击,其利用TCP协议的三次握手过程中的缺陷。在正常的TCP连接建立过程中,客户端发送一个SYN报文给服务器端,服务器回应SYN+ACK报文,然后客户端再发送ACK报文进行确认,三次握手完成后连接建立。然而,如果客户端发送大量SYN报文却不回应服务器的SYN+ACK报文,服务器会为了这些未完成的连接不断分配资源,最终耗尽资源而无法处理正常的客户端连接请求。 实验目的: 模拟SYN洪水攻击,通过发送大量伪造的TCP连接请求(SYN报文)来消耗目标系统的资源。 测试和验证防御措施的有效性,如修改TCP连接参数(如tcp_synack_retries和tcp_syncookies)、使用防火墙和入侵检测系统(IDS)等。 实验原理: SYN洪水攻击的原理在于利用TCP协议三次握手机制的缺陷。攻击者通过伪造IP地址和端口号,向目标服务器发送大量SYN请求报文,但不响应服务器的SYN+ACK报文。服务器在等待客户端的ACK报文时,会保持这些未完成的连接状态,并

2024-10-18

【STM32单片机】贪吃蛇游戏设计

【STM32单片机】贪吃蛇游戏设计 本项目支持STM32F103/STM32F407控制器,使用TFTLCD触摸屏、按键、LED等。 项目功能:系统运行后,TFTLCD触摸屏显示游戏界面,通过按键任意键进入游戏界面,然后通过按键KEY_UP、KEY1、KEY2和KEY0键控住上下左右方向。每当蛇吃到3个食物,速度就会提升一个等级,并且显示得分和等级,最高位5级。当游戏结束后可按任意键重新回到主界面开始。

2023-12-13

自动化文件夹脚本程序,批量创建文件夹

当你需要在计算机上批量创建文件夹时,可以使用脚本来自动化这个过程。下面是一个简单的Python脚本示例,它能够根据指定的文件夹名和数量,批量创建文件夹。

2023-12-13

百度热搜数据集2022.8-2025.6

百度热搜数据集2022.8-2025.6

2025-07-16

抖音热搜历史数据集-2023.3-2025.6年热搜数据集

抖音热搜历史数据集-2023.3-2025.6年热搜数据集; 字段:标题、在榜时间、在榜时长、排名、链接

2025-07-15

微博历史-热搜数据集:数据从2021年6月14到2025年6-30日数据集整合

微博热搜历史数据集:数据从2021年6月14到2025年6-30日数据集整合;字段:标题、最后在热榜时间、持续在榜时长、最高排名、热度、采集时间、更新时间

2025-07-14

微博评论爬虫-接口采集非自动化

微博评论爬虫-接口采集非自动化

2025-07-06

京东商品采集、店铺采集、评价采集-网站可视化;资源内存储爬虫、数据库数据、前后端完整内容

京东商品采集、店铺采集、评价采集-网站可视化 详情见博文:https://niuma.blog.csdn.net/article/details/148825464?spm=1011.2415.3001.5331

2025-06-22

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅;工具介绍博客:https://blog.csdn.net/weixin_55010563/article/details/148580833?

2025-06-11

游览器切换代理saoshen插件

游览器切换代理saoshen插件

2025-06-10

中国高校数据采集与可视化分析系统

中国高校数据采集与可视化分析系统

2025-06-09

家政服务系统-springboot+vue

家政服务系统-springboot+vue

2025-05-24

https://hbba.sacinfo.org.cn/stdList-行业标准信息服务平台-数据集

行业标准信息服务平台-数据集-https://hbba.sacinfo.org.cn/stdList 字段:标准号 发布日期 实施日期 制修订 代替标准 中国标准分类号 国际标准分类号 技术归口 批准发布部门 行业分类 标准类别 标准名称 备案号 备案日期 起草单位 起草人

2025-05-21

一起上岸研友网站设计与实现

一起上岸研友网站设计与实现

2025-05-21

基于Django框架的高校实验室管理系统设计与实现-毕业设计

高校实验室管理系统是一个基于Django框架开发的综合性平台,旨在提升实验室管理效率,优化资源配置,并简化预约流程。系统包含用户管理、实验室资源管理、预约管理、设备管理、数据统计与分析、通知与消息系统等六大功能模块,支持多角色用户系统,包括管理员、教师、学生和实验室管理员。技术架构采用HTML5/CSS3/JavaScript、Bootstrap、jQuery/AJAX等前端技术,以及Django框架、PostgreSQL/MySQL数据库等后端技术。系统特色包括响应式设计、权限精细控制、智能冲突检测、数据可视化和扩展性强。预期成果包括资源利用率提高30%以上,预约流程时间缩短50%,设备维护响应时间缩短40%,管理成本降低25%。该系统将为高校实验室管理提供现代化、智能化的解决方案,促进实验室资源的合理配置和高效利用。

2025-05-15

基于springboot的教师日程管理系统

**基于SpringBoot的教师日程管理系统** 本系统是一款专为高校教师设计的智能化日程管理平台,基于SpringBoot框架开发,整合Spring Security、JPA、Redis等技术,提供高效、安全的日程管理解决方案。系统支持教学计划安排、会议管理、科研任务跟踪及个人事务提醒,帮助教师优化时间分配,提升工作效率。 **核心功能** 1. 日程管理:支持创建、编辑、分类(教学/会议/科研/个人)日程,提供智能冲突检测和多方式提醒(系统通知/邮件)。 2. 教学管理:课程表维护、教室预约、教学进度跟踪,避免时间冲突。 3. 会议协作:会议创建、邀请、签到管理,支持会议室预约和纪要共享。 4. 数据分析:可视化统计日程分布、活动占比,辅助教师优化时间管理。 5. 共享与协作:支持个人、院系或全校日程共享,促进团队协作。 **技术优势** • 前后端分离:前端采用Bootstrap+Thymeleaf,后端基于SpringBoot,确保高性能与可扩展性。 • 安全可靠:Spring Security实现权限控制,Redis缓存提升响应速度,Quartz定时任务保障提醒精准送达。 • 多端适配:响应式设计,兼容PC和移动端,数据实时同步。 本系统助力教师高效管理时间,平衡教学、科研与生活,是现代化高校管理的理想工具。

2025-05-13

Python+Flask+MySQL膳食健康管理系统设计与实现(附完整源码+数据库)

知识领域:计算机科学/健康营养信息学 技术关键词:Python 3.8+, Flask 2.0, MySQL 8.0, Pandas, Matplotlib, scikit-learn 内容关键词:膳食分析系统、营养计算算法、健康数据可视化、个性化饮食推荐 用途: 1. 计算机专业毕业设计参考项目 2. 健康管理类应用开发实战案例 3. 营养学与信息技术交叉学科研究素材 4. Python全栈开发学习项目

2025-05-13

PyQt5(GUI框架)、Folium(地图可视化)

技术关键词:PyQt5(GUI框架)、Folium(地图可视化)、NetworkX(图算法)、QWebEngineView(网页渲染) 内容关键词:景点数据库、交互式地图、路线规划算法、用户界面设计 用途:帮助游客规划最优旅游路线,可视化展示景点分布,计算景点间最短路径,提升旅游体验效率 1. 使用PyQt5构建直观的用户界面 2. 集成Folium地图实现景点可视化 3. 基于NetworkX实现Dijkstra等路径规划算法 4. 提供景点搜索、路线规划、时间估算等功能 5. 支持交互式地图操作和路线展示

2025-05-13

咸鱼采集-支持首图预览-发起对话

咸鱼采集-支持首图预览-发起对话

2025-05-08

基于python的新能源汽车推荐及数据分析系统完整源码

基于Python的新能源汽车推荐及数据分析系统 系统概述本系统是一个基于Python技术栈开发的新能源汽车智能推荐与数据分析平台,旨在帮助消费者根据个人需求筛选合适的新能源汽车,同时为行业从业者提供市场趋势分析和决策支持。 核心功能 1. 智能推荐引擎 • 多维度筛选:支持按价格区间、续航里程、品牌偏好等条件筛选 • 混合推荐算法:结合协同过滤与内容相似性推荐 • 个性化排序:根据用户历史行为动态调整推荐权重 2. 深度数据分析 • 市场趋势分析:销量走势、价格分布、品牌占有率 • 技术参数对比:电池性能、充电效率、动力系统 • 用户评价分析:情感分析、关键词提取、评分分布 3. 可视化展示 • 交互式仪表盘:动态图表展示核心指标 • 车辆对比工具:雷达图/柱状图多维度对比 • 地理热力图:区域销量和政策可视化 技术架构 1. 技术栈 • 后端:Python + Flask/FastAPI • 前端:HTML5 + JavaScript + Dash/Plotly • 数据库:MySQL/MongoDB + Redis缓存 • 数据分析:Pandas + NumPy + SciPy • 机器学习:Scikit-learn + TensorFlow(可选) 2. 系统架构 ``` 用户层 → API网关 → 业务服务层 → 数据服务层 → 数据存储层 ↑ 缓存层(Redis) ``` 1. 数据采集:通过API/爬虫获取车辆数据 2. 数据清洗:处理缺失值、标准化格式 3. 数据存储:结构化存储到数据库 4. 数据分析:执行统计分析/机器学习 5. 结果展示:通过可视化组件呈现

2025-04-23

本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统 该系统可实现:自动登录企业账号关键词搜索职位滚动加载全量数据自动化数据存储反爬机制规避

BOSS直聘职位信息自动化采集系统设计与实现 一、项目背景 本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统。该系统可实现: 1. 自动登录企业账号 2. 关键词搜索职位 3. 滚动加载全量数据 4. 自动化数据存储 5. 反爬机制规避 ![BOSS直聘数据采集架构图](https://example.com/architecture.png) 二、环境准备 依赖库安装 ```bash pip install DrissionPage DataRecorder requests openpyxl ``` 环境要求 1. Chrome浏览器(版本与chromedriver匹配) 2. 配置ChromeDriver路径 3. 企业账号权限(需实名认证) 三、核心代码解析 1. 初始化配置 ```python page = WebPage('d') # 使用无头模式 recorder = Recorder(f'{keyword}.xlsx', cache_size=10) # 初始化数据记录器 ``` • `WebPage('d')`:启用无头浏览器模式 • `Recorder`:配置Excel存储引擎,设置10条缓存 2. 登录模块 ```python def login(): page.get('https://www.zhipin.com/nanjing/?ka=query_select_city_101190100') input('登录后回车......') ``` • 自动跳转到城市选择页面 • 手动扫码登录机制(应对滑动验证码) 3. 核心采集逻辑 ```python def spider(): link = f'https

2025-04-25

yolo的算法模型的人群计数系统

yolo的算法模型的人群计数系统

2025-04-22

该系统旨在利用协同过滤算法为用户提供个性化的体育商品推荐,提高用户购物体验和商家销售转化率

**基于协同过滤算法的体育商品推荐系统** **详细需求分析文档** --- **1. 引言** **1.1 目的** 本需求分析文档旨在详细描述基于协同过滤算法的体育商品推荐系统的功能、性能、数据及安全需求,为系统设计、开发和测试提供依据。 **1.2 适用范围** • 适用于电商平台、体育用品商城等需要个性化推荐功能的系统。 • 适用于产品经理、开发团队、测试团队及业务方。 **1.3 术语定义** | 术语 | 定义 | |------|------| | 协同过滤(CF) | 基于用户历史行为(如评分、购买、浏览)计算用户或商品相似度,进行个性化推荐。 | | 用户相似度 | 衡量不同用户偏好的相似程度,用于基于用户的协同过滤(User-based CF)。 | | 商品相似度 | 衡量不同商品被同一用户偏好的相似程度,用于基于商品的协同过滤(Item-based CF)。 | | 冷启动问题 | 新用户或新商品因缺乏历史数据而难以推荐的问题。 | | Top-N推荐 | 系统向用户推荐最可能感兴趣的N个商品。 | --- **2. 系统功能需求** **2.1 用户管理模块** | 功能 | 详细描述 | |------|---------| | 用户注册/登录 | 支持邮箱、手机号、第三方账号(微信、Google)登录。 | | 用户画像 | 记录用户基本信息(性别、年龄、运动偏好)。 | | 行为数据采集 | 记录用户浏览、收藏、购买、评分等行为,用于推荐计算。 | | 偏好设置(可选) | 允许用户手动调整推荐偏好(如“更喜欢篮球类商品”)。 | **2.2 商品管理模块** | 功能 | 详细描述 | |------|---------

2025-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除